• Solar Inverter in Pakistan - On Grid Solar Inverter GS4600-SS System 1
  • Solar Inverter in Pakistan - On Grid Solar Inverter GS4600-SS System 2
  • Solar Inverter in Pakistan - On Grid Solar Inverter GS4600-SS System 3
Solar Inverter in Pakistan - On Grid Solar Inverter GS4600-SS

Solar Inverter in Pakistan - On Grid Solar Inverter GS4600-SS

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW4600-SS

 

GW4600-SS photovoltaic inverter is suitable for home rooftop photovoltaic system, designed under modern industrial concept. There are three colors for option with fashionable appearance. The maximum output power of this model can reach 5100W. It is not only the largest one among GoodWe single-phase inverters, but also the model with the maximum power using single-tube design. Besides, it maintains extremely higher conversion efficiency, uses natural heat dissipation and has an extremely wide range of input voltage and input current. It holds a safe lead among the same level of products.

DC Input DataMax.PV-generator power[W]5400
Max.DC voltage[V]580
MPPT voltage range[V]125~450
Turn on DC voltage[V]125

Max.DC work current[A]

20
Number of inputs/MPP trackers3/1
DC connectionMC IV Connector
Self-energy consumption[W]<5< td="">
AC Output DataNominal AC power[W]4600
Max.AC power[w]5100
Max.output current[A]25
Nominal output voltage rangeAccording to VDE0126-1-1/AI, RD1663, ENEL, G83,G59,SAA
AC grid frequencyAccording to VDE0126-1-1/AI, RD1663, ENEL, G83,G59,SAA
THDi〈1%
Power factor~1 (Norminal power)
AC connectionSingle phase
EfficiencyMax.efficiency97.8%
European efficiency97.4%
MPPT adaptation efficiency>99.5%
Safty EquipmentLeakage current monitoring unitIntegrated
DC disconnector switchOptional
Islanding protectionAFD
Grid monitoring

According to VDE 0126-1-1/AI,AS4777.1/2/3, RD1663,

ENEL,G83,G59-2

Normative ReferenceEMC complianceEN 61000-6-1,EN 61000-6-2, EN 61000-6-3,EN 61000-6-4
Safety complianceAccording to IEC 62109-1,AS3100
General DataDimensions(W*H*D) [mm]390*417*142
Net weight [kg]18
HousingFor outdoor and indoor
Mounting informationWall mounting
Operating temperature range-20~60℃(up 45℃ derating)
Relative humidity0 ~ 95%
Site altitude[m]2000
IP proection classIP65
TopologyTransformerless
CoolingNature convection
Noise level[dB]〈25
Display4"LCD
CommunicationUSB2.0;RS485(Wireless/Bluetooth optional)
Standard warranty[years]5/10(optional)

 

Q: Can a solar inverter be used with a solar-powered irrigation system?
Yes, a solar inverter can be used with a solar-powered irrigation system. A solar inverter is responsible for converting the direct current (DC) produced by the solar panels into alternating current (AC), which is required to power various electrical devices. In the case of a solar-powered irrigation system, the solar inverter can convert the DC generated by the solar panels into AC to power the irrigation pump or other electrical components of the system. This ensures that the solar energy captured by the panels can be effectively utilized for irrigation purposes.
Q: Are there any limitations on the number of solar panels that can be connected to a single inverter?
The number of solar panels that can be connected to a single inverter is limited. Various factors, such as the inverter's power rating, the voltage and current ratings of the panels, and the system's configuration, determine the maximum number of panels that can be connected. In general, the inverter should be able to handle the combined power output of all the connected panels. If the panels generate more power than the inverter can handle, it can lead to inefficiencies, reduced performance, or damage to the inverter. Moreover, the panels' voltage and current ratings should be within the acceptable range of the inverter. If the panels exceed the inverter's safe limits, it can lead to overloading or malfunctioning. Furthermore, the configuration of the panels is also important in determining the limitations. Panels can be connected in series or parallel, each with its own requirements and limitations. The inverter must be compatible with the specific configuration used. To ensure proper functioning and optimal performance, it is advisable to refer to the manufacturer's guidelines and specifications for both the solar panels and the inverter. These guidelines provide information on the maximum number of panels that can be connected to a single inverter, as well as any other specific limitations or requirements to consider.
Q: Can a solar inverter be used in mobile or portable solar systems?
Yes, a solar inverter can be used in mobile or portable solar systems. In fact, they are essential components of such systems as they convert the DC power generated by solar panels into AC power that can be used to power various devices and appliances. Portable solar systems often include built-in inverters to enable convenient and efficient use of solar energy on the go.
Q: Can a solar inverter be used with a solar-powered air conditioning system?
Yes, a solar inverter can be used with a solar-powered air conditioning system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power appliances. In the case of a solar-powered air conditioning system, the solar inverter enables the AC produced by the solar panels to be used by the air conditioning unit. This allows for the efficient use of solar energy to power the air conditioning system, reducing reliance on the grid and promoting sustainability.
Q: Can a solar inverter be used with both AC and DC power sources?
No, a solar inverter is designed to convert DC power from solar panels into AC power for use in standard electrical systems. It cannot be used with both AC and DC power sources simultaneously.
Q: What are the methods of photovoltaic grid-connected inverter control
Inverter main circuit need to have a control circuit to achieve, generally have square wave and sine wave two control methods, square wave output inverter power supply circuit is simple, low cost, but low efficiency, harmonic components. Sine wave output is the development trend of the inverter, with the development of microelectronics technology, there are PWM function of the microprocessor has also come out, so the sine wave output inverter technology has matured.
Q: Does a solar inverter require a separate grounding system?
Yes, a solar inverter typically requires a separate grounding system to ensure proper electrical safety and protection against potential faults or surges. Grounding helps to divert any excess electrical current away from the inverter and reduces the risk of electrical shocks, equipment damage, or fire hazards.
Q: Can a solar inverter be used in conjunction with a generator?
Yes, a solar inverter can be used in conjunction with a generator. In fact, it is a common setup in off-grid or hybrid systems. The solar inverter can work alongside the generator to provide electricity when solar power is insufficient, ensuring a continuous and reliable power supply.
Q: Can a solar inverter be connected to a generator?
Yes, a solar inverter can be connected to a generator. This connection allows the solar inverter to work in conjunction with the generator, utilizing both the solar energy and the generator power to meet the electrical requirements of a system.
Q: How does a solar inverter protect against voltage fluctuations?
A solar inverter protects against voltage fluctuations by continuously monitoring and regulating the electrical output from the solar panels. It adjusts the voltage and frequency of the direct current (DC) generated by the panels to match the utility grid's alternating current (AC) voltage requirements, ensuring a stable and consistent power supply. Additionally, solar inverters have built-in protection mechanisms such as surge suppression and overvoltage/undervoltage detection, which safeguard the system from voltage spikes or drops, preventing any potential damage to the solar panels or electrical devices.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords