• Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar System 1
  • Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar System 2
  • Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar System 3
  • Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar System 4
  • Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar System 5
  • Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar System 6
Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
20~650mm
Width:
20~650mm
Length:
as per customer's requirments
Outer Diameter:
20~650mm
Net Weight:
1m.t.
Packaging:
seaworthy packaging

Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Details Information of Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

NameGrade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar
ShapeRound Bar/Square Bar/Flat Bar/Plate/Wire
StandardGB/ASTM/SAE/AISI/DIN/JIS/EN/BS
Surface Treatment:Black/Peeling/Polished/Machined  
Delivery Condition:Hot Rolled or Forged/Peeled or Black Surface
TestSGS/UT 100% Elements Testing
Certificate:ISO/Mill Certificate
Service:24 hours online service /
more than 20 years trading and manufacture 
Quality Assurance:the third party inspection, such as SGS, BV, TUV…etc. is acceptable
Packaging Details:Seaworthy Packaging or as per customer's packing instruction

 

Carbon structure round barQ195 Q235A Q235B 10# 20#-55# S45CB
Low alloy high strength round barQ345A/Q345C/Q345D Q345B Q345E
Alloy structure round barSAE51B20 20Cr 40Cr 40CrV 20CrMo/30CrMo/35CrMo/42CrMo 20CrMoA/30CrMoA/35CrMoA/42CrMoA/42Cr ML20CrMo/ML30CrMo/ML35CrMo/ML42CrMo B7/SCM435-440 20MnTiB 20CrMnMo 20CrMoH 42CrMoH 40MnB/40MnBH 30Mn2-40Mn2 27SiMn 50CrVA 30CrMnTi
Pinion steel20CrMnTi 20CrMnTiH 20CrMnTiHCS/20CrMnTiHLD Q20CrMnTi-1/Q20CrMnTi-2
Sucker rod20-35CrMoA
Free-cutting steelGT1215S
Spring steel60Si2MnA 65Mn
Ball bearing steelGCr15

 Chemical Composition of Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

 C Si Mn P SCrNiCu
0.17-0.240.17-0.370.35-0.65≤0.035≤0.035≤0.25≤0.25≤0.25

 

    Tensile strength (σb/MPa)Yield strength (σb/MPa)Elongation (δ5/%)
              ≥410(42)             ≥245(25)                  ≥25

Company Introduction of Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

 

Certificates of Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

 

Packaging & Delivery of Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products show of Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

Grade 34CrNiMo6/DIN1.6582/ AISI4340 Steel Round Bar

 

FAQ

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q:How does quenching and tempering affect the hardness of special steel?
Quenching and tempering significantly impact the hardness of special steel. Quenching involves rapidly cooling the steel from a high temperature, which results in a hard and brittle structure. On the other hand, tempering involves reheating the quenched steel to a specific temperature and then cooling it slowly, which reduces the brittleness and increases the toughness of the steel while maintaining a desired level of hardness. Overall, this heat treatment process modifies the microstructure of the steel, leading to a controlled increase in hardness while improving its mechanical properties.
Q:What are the advancements and trends in the field of special steel?
In recent years, the field of special steel has witnessed significant advancements and emerging trends that have revolutionized various industries. These advancements can be primarily attributed to the growing demand for high-performance materials in critical applications, such as aerospace, automotive, energy, and construction. One of the major advancements in the field of special steel is the development of advanced manufacturing techniques. Traditional steel production methods have been replaced by more efficient processes like electric arc furnaces and vacuum induction melting, resulting in improved steel quality and enhanced mechanical properties. These advancements have facilitated the production of special steels with superior strength, corrosion resistance, and heat resistance. Another significant trend in the field of special steel is the emergence of new alloy compositions. Researchers and manufacturers are continuously exploring and developing novel alloying elements to enhance the properties of special steels. For instance, the addition of elements like chromium, molybdenum, and vanadium has led to the development of stainless steels with exceptional resistance to corrosion and oxidation. Furthermore, the field of special steel has also witnessed advancements in heat treatment processes. By employing advanced heat treatment techniques like quenching and tempering, austempering, and martempering, special steels can achieve desired hardness, toughness, and dimensional stability. These advancements have significantly expanded the application range of special steels, allowing them to be used in critical components that operate under extreme conditions. In addition to advancements in manufacturing and alloy compositions, there is a growing trend towards the development of environmentally friendly special steels. With increasing concerns about sustainability and carbon footprint, researchers and manufacturers are focusing on reducing the environmental impact of steel production. This has led to the development of special steels with lower carbon content, as well as the implementation of energy-efficient manufacturing processes. Moreover, the field of special steel is witnessing the integration of digital technologies and automation. The use of artificial intelligence, machine learning, and data analytics is enabling manufacturers to optimize production processes, improve quality control, and reduce costs. This trend towards Industry 4.0 is transforming the way special steel is produced and utilized, ensuring greater efficiency and precision in the manufacturing process. In conclusion, the field of special steel is experiencing significant advancements and trends that are driving innovation in various industries. The development of advanced manufacturing techniques, new alloy compositions, improved heat treatment processes, environmentally friendly production methods, and the integration of digital technologies are revolutionizing the properties and applications of special steel. These advancements have not only enhanced the performance and durability of special steel but also opened up new possibilities for its utilization in critical applications.
Q:What are the safety benefits of using special steel?
Several safety benefits can be obtained in various applications by using special steel. One of the key advantages lies in its superior strength and durability when compared to traditional steel. Special steel is often specifically designed to withstand extreme conditions, such as high temperatures or corrosive environments, making it highly suitable for industries like aerospace, automotive, and oil and gas. The enhanced strength of special steel allows for the construction of structures that are safer and more reliable. It can bear heavy loads, thus reducing the risk of structural failures or collapses. This is particularly crucial in industries where the utmost importance is placed on the safety of workers, equipment, and the general public. Resistance to corrosion is another safety benefit of special steel. Corrosion has the potential to weaken structures and compromise their safety. Special steel is frequently alloyed with elements like chromium, nickel, or molybdenum, which provide excellent resistance to corrosion. This makes it suitable for applications in marine environments, chemical processing plants, or any setting where exposure to moisture or chemicals is a concern. Special steel is also renowned for its ability to maintain its mechanical properties at high temperatures. This makes it an excellent choice for applications where resistance to heat is crucial, such as in the construction of fire-resistant structures or in the manufacturing of industrial ovens and furnaces. By utilizing special steel in these applications, the risk of structural failure or fire-related accidents can be significantly reduced. Furthermore, special steel can offer improved resistance to fatigue, which is of utmost importance in applications subject to cyclic loading or vibration. Fatigue failure can occur when a material experiences repeated stress over time, resulting in cracks and eventual failure. Special steel can be engineered to possess excellent fatigue properties, thereby reducing the likelihood of unexpected failures and enhancing the overall safety of structures or equipment. In conclusion, the safety benefits of using special steel encompass enhanced strength, durability, resistance to corrosion, resistance to heat, and resistance to fatigue. These properties establish special steel as a reliable choice for industries where safety is a primary concern, ensuring the protection of workers, equipment, and the general public.
Q:What are the main characteristics of alloy steel forgings?
Alloy steel forgings possess several key characteristics that make them highly desirable in various industries. Firstly, alloy steel forgings are known for their exceptional strength and durability. The inclusion of different alloying elements, such as chromium, nickel, molybdenum, and vanadium, enhances the steel's mechanical properties, making it resistant to wear, fatigue, and corrosion. Another important characteristic of alloy steel forgings is their versatility. These forgings can be customized to meet specific requirements, whether it be in terms of shape, size, or performance. This adaptability allows for the production of complex and intricate components that are often used in critical applications, such as aerospace, automotive, and oil and gas industries. Additionally, alloy steel forgings exhibit excellent heat resistance and can withstand extreme temperature fluctuations without losing their structural integrity. This property is particularly beneficial in applications where components are exposed to high temperatures or rapid temperature changes, such as gas turbines, boilers, and heat exchangers. Furthermore, alloy steel forgings offer superior machinability and weldability, making them easier to work with during the manufacturing process. This characteristic allows for precise shaping, forming, and machining of the forgings, enabling manufacturers to achieve intricate designs and tight tolerances. Lastly, alloy steel forgings are known for their cost-effectiveness. Despite their exceptional properties, alloy steel forgings can be produced in large quantities, resulting in economies of scale. This makes them a cost-efficient choice for various industries looking to balance performance, durability, and affordability. In summary, the main characteristics of alloy steel forgings are their exceptional strength, durability, versatility, heat resistance, machinability, weldability, and cost-effectiveness. These qualities make alloy steel forgings a preferred choice for applications requiring high-performance components that can withstand challenging conditions.
Q:What are the properties of nitrogen alloyed steel?
Nitrogen alloyed steel has several unique properties. Firstly, it exhibits increased strength and hardness compared to regular steel due to the presence of nitrogen. This makes it suitable for applications that require high tensile strength and resistance to wear and tear. Additionally, nitrogen alloyed steel demonstrates excellent corrosion resistance, making it ideal for use in environments with exposure to moisture or chemicals. Moreover, it offers good weldability and formability, allowing for ease of fabrication and shaping. Overall, nitrogen alloyed steel offers a combination of strength, durability, and resistance to corrosion, making it a versatile choice for various industrial applications.
Q:How is special steel used in the mining industry?
Special steel is used in the mining industry for various applications such as drilling tools, conveyor systems, crushing equipment, and structural components. Its high strength, toughness, and resistance to wear and corrosion make it ideal for withstanding the harsh conditions and heavy loads commonly encountered in mining operations. Additionally, special steel is used for creating cutting edges and teeth on mining machinery, enhancing their efficiency and durability.
Q:What are the factors affecting the machinability of special steel?
The machinability of special steel can be influenced by a variety of factors. 1. The composition of special steel plays a significant role in its machinability. Certain alloying elements, such as sulfur and lead, can enhance machinability by creating free-cutting properties. Conversely, elements like chromium and nickel can make the steel more difficult to machine. 2. Machinability can also be affected by the hardness of the special steel. As the hardness increases, the steel becomes more challenging to machine. Harder steel requires higher cutting forces, which can lead to increased tool wear and slower machining speeds. 3. The microstructure of special steel, including grain size and distribution, can have an impact on machinability. Fine-grained steels generally exhibit better machinability compared to coarse-grained ones. Additionally, the presence of certain phases, such as carbides, can pose challenges during machining. 4. The heat treatment process applied to special steel can influence its machinability. Certain heat treatments, such as annealing or stress relieving, can improve machinability by reducing hardness and internal stresses. Conversely, hardening treatments can increase hardness, making the steel more difficult to machine. 5. Machinability can also be affected by the choice of cutting conditions. Factors such as cutting speed, feed rate, and depth of cut need to be optimized to balance productivity and tool life. Inadequate cutting conditions can result in excessive tool wear, poor surface finish, and reduced machining efficiency. 6. The selection of cutting tools is critical for achieving good machinability in special steel. The tool material must possess appropriate hardness, toughness, and wear resistance to withstand the cutting forces generated during machining. The tool geometry, including rake angle and relief angle, also influences chip formation and heat dissipation, thereby impacting machinability. 7. Proper lubrication and cooling methods are essential for achieving good machinability. Lubricants help reduce friction and heat generation during machining, while cooling methods, such as flood cooling or misting, can dissipate heat and prolong tool life. Insufficient lubrication or cooling can result in increased tool wear, surface finish issues, and reduced machinability. In conclusion, achieving improved machinability and productivity in machining special steels requires a comprehensive understanding and optimization of factors related to composition, microstructure, heat treatment, cutting conditions, tooling, and cooling methods.
Q:How does special steel maintain its strength at different temperatures?
Special steel maintains its strength at different temperatures due to its unique composition and heat treatment process. It is alloyed with elements like chromium, nickel, and molybdenum, which form stable compounds at high temperatures, preventing the steel from losing its strength. The heat treatment process involves carefully controlling the cooling rate, which further enhances the steel's microstructure and ensures its strength is retained even at extreme temperatures.
Q:Can special steel be used in the production of hydraulic components?
Yes, special steel can be used in the production of hydraulic components. Special steel possesses superior strength, corrosion resistance, and durability properties, making it suitable for applications in the hydraulic industry. Special steel can withstand high pressure, extreme temperatures, and abrasive environments, ensuring reliable and efficient operation of hydraulic systems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords