• FC 90 95 99% carbon raiser for steel making graphite based petroleum coke recarburizer System 1
  • FC 90 95 99% carbon raiser for steel making graphite based petroleum coke recarburizer System 2
  • FC 90 95 99% carbon raiser for steel making graphite based petroleum coke recarburizer System 3
  • FC 90 95 99% carbon raiser for steel making graphite based petroleum coke recarburizer System 4
FC 90 95 99% carbon raiser for steel making graphite based petroleum coke recarburizer

FC 90 95 99% carbon raiser for steel making graphite based petroleum coke recarburizer

Ref Price:
get latest price
Loading Port:
Dalian
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t
Supply Capability:
500000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Carbon Raiser:

 

- F.C 90-95% 
- Low sulfur 
- ISO 9001 
- Calcined petroleum coke

 

 

FC 90-95-99% carbon raiser for steelmaking/Calcined anthracite / graphite based / petroleum coke recarburizer

 

Recarburizer carbon rasier points steelmaking recarburizer (People's Republic of China ferrous metallurgy industry standards, YB / T 192-2001 steelmaking recarburizer) and cast iron with carbon agent, and other materials are also useful to add carbon rasier such as brake pads with additives, as friction materials. carbon rasier belong plus steel, iron by carbon materials. carbon rasier quality is essential for the production of high-quality steel auxiliary additives. 


Carbon rasier there are a variety of raw materials, production processes are different, there are wood carbons, carbon-based coal, coke, graphite, etc., of which there are many small species under various categories. High quality carbon agent generally refers to after graphitized carbon agent under high temperature conditions, the arrangement of carbon atoms in graphite morphology was, so called graphitization. Graphitization can reduce the content of impurities recarburiser improve recarburizer carbon content and reduce sulfur content.

 


Recarburizer Features: 


- Medium particle size, porosity, large, absorption speed. 
- Using petroleum coke firing temperature, the chemical composition of pure carbon, sulfur, harmful ingredients minimal absorption rate. 
- Product good degree of graphitization, improve the original form of liquid iron nuclear capability. Ductile iron ball to increase the number of ink in breeding, increasing the graphite furnace liquid iron nuclei. Refined, uniform distribution of the graphite in the cast. 
- excellent performance and stability.

 

Specifications   (%):

Grade

 F.C

 Ash

 V.M

 Moisture

 S

Size

CR-95

≥95

<4

<1

<1

<0.3

0-30mm 
  As buyer's request.

CR-94

≥94

<4

<1

<1

<0.3

CR-93

≥93

<6

<1

<1

<0.4

CR-92

≥92

<7

<1

<1

<0.4

CR-91

≥91

<8

<1

<1

<0.4

CR-90

≥90

<8.5

<1.5

<2

<0.4

 


Carbon rasier Packing:

- Carbon rasier waterproof bags 25KG / bag, plus tons of bags or trays 
- Also provide suitable package according to your needs.

 

 

 


Q: How is carbon used in the production of plastics?
Plastics heavily rely on carbon, an indispensable ingredient, for their manufacturing. These polymers consist of extensive chains formed by repeating units, known as monomers. These monomers, in turn, consist of smaller molecules. Carbon atoms constitute a vital element in these monomers, serving as the foundation for the polymer chain. To acquire carbon for plastic production, diverse petroleum products, like crude oil and natural gas, are sourced. These fossil fuels contain hydrocarbons, which are organic compounds comprised of carbon and hydrogen atoms. Through a refining process called cracking, hydrocarbons are broken down into smaller molecules, including ethylene and propylene, which serve as the basic building blocks for numerous plastic types. Once these monomers are acquired, they are polymerized, meaning they are chemically bonded together to create lengthy chains. Carbon atoms play a critical role in this procedure, as they connect to shape the backbone structure of the polymer chain. The specific arrangement and bonding of carbon atoms dictate the properties of the resulting plastic, including its strength, flexibility, and durability. It is worth noting that while carbon is crucial, not all plastics are exclusively composed of this element. Other elements, such as oxygen, nitrogen, and chlorine, may be present in the monomers or introduced during production to enhance specific properties or introduce desired functionalities. All in all, carbon serves as a fundamental element in plastic production. It establishes the backbone structure, enabling the versatility and wide array of applications of plastic materials across various industries.
Q: What are the environmental impacts of carbon emissions?
The environmental impacts of carbon emissions include climate change, air pollution, ocean acidification, and ecosystem disruptions. Carbon emissions contribute to the greenhouse effect, leading to global warming and climate change. This results in more frequent and intense extreme weather events such as hurricanes, droughts, and heatwaves. Additionally, carbon emissions contribute to air pollution, especially in urban areas, leading to respiratory problems and other health issues. Increased carbon dioxide in the atmosphere also leads to ocean acidification, threatening marine life and coral reefs. Finally, carbon emissions disrupt ecosystems by altering the natural balance of carbon cycles and causing habitat loss for many species.
Q: How can individuals reduce their carbon footprint?
There are several actions individuals can take to reduce their carbon footprint and contribute to a more sustainable future. Here are some effective ways to achieve this: 1. Reduce energy consumption: Conserving energy is crucial in reducing carbon emissions. Switch to energy-efficient appliances, turn off lights when not in use, unplug electronics when not in use, and use natural lighting whenever possible. Additionally, adjusting thermostats to energy-saving temperatures and using programmable thermostats can significantly reduce energy consumption. 2. Use renewable energy sources: Transitioning to renewable energy sources, such as solar or wind power, can greatly reduce carbon emissions. Install solar panels on rooftops, or consider purchasing green energy from utility companies that offer renewable options. 3. Reduce water usage: Conserving water indirectly helps reduce energy consumption and carbon emissions. Fix leaky faucets, take shorter showers, install water-saving fixtures, and collect rainwater for outdoor use. Also, consider using drought-resistant landscaping to reduce water usage for gardening. 4. Consume consciously: Make sustainable choices when purchasing products. Opt for durable and long-lasting items, repair and reuse instead of replacing, and prioritize products made from recycled or sustainable materials. Additionally, support local and sustainable businesses that prioritize eco-friendly practices. 5. Minimize transportation emissions: Reduce reliance on private vehicles by opting for public transportation, carpooling, biking, or walking whenever possible. If owning a car is necessary, choose electric or hybrid vehicles. Regular maintenance, proper tire inflation, and avoiding unnecessary idling all contribute to reducing transportation emissions. 6. Adopt a plant-based diet: The food industry has a significant carbon footprint, especially due to livestock production. Reducing meat consumption or adopting a plant-based diet can greatly reduce carbon emissions and also offer health benefits. If going completely plant-based is not feasible, try incorporating more vegetarian or vegan meals into your diet. 7. Reduce waste generation: Waste contributes to greenhouse gas emissions, so reducing waste is essential. Opt for products with minimal packaging, recycle diligently, compost organic waste, and avoid single-use plastics. Reduce food waste by planning meals, buying only what is needed, and properly storing leftovers. 8. Support environmental initiatives and organizations: Engage with local and global organizations working towards environmental conservation. Participate in community clean-ups, support reforestation efforts, and advocate for sustainable practices in your workplace and community. By implementing these strategies in our daily lives, individuals can make a significant impact in reducing their carbon footprint and help combat climate change. It is important to remember that every small action matters, and collectively, we can create a sustainable future for generations to come.
Q: What are the different types of carbon steel?
There are several different types of carbon steel, including low carbon steel, medium carbon steel, and high carbon steel. Each type has varying levels of carbon content, which affects its strength, hardness, and machinability. Low carbon steel has the lowest carbon content and is known for its ductility and ease of welding. Medium carbon steel contains a higher carbon content and is more durable, making it suitable for applications that require strength and toughness. High carbon steel has the highest carbon content and is exceptionally strong and hard, but also less ductile and more brittle.
Q: What are the impacts of carbon emissions on the stability of deserts?
Deserts are significantly affected by carbon emissions, which have various consequences. One major consequence is the worsening of desertification, where fertile land transforms into desert. Carbon emissions contribute to global warming, resulting in higher temperatures and increased evaporation. This, in turn, reduces soil moisture and increases aridity in desert regions, intensifying desertification and causing deserts to expand. Furthermore, carbon emissions also impact precipitation patterns, directly affecting desert stability. Climate change leads to shifts in weather patterns, causing some areas to experience reduced rainfall and others to face more frequent and intense droughts. These precipitation changes further worsen desertification processes and increase desert instability. Another effect of carbon emissions on desert stability is the increased occurrence and intensity of dust storms. As global warming leads to drier conditions and less vegetation cover, the risk of dust storms rises. These storms transport large amounts of fine particulate matter, including dust and sand, over long distances, resulting in negative consequences. Dust storms damage infrastructure, harm human health, degrade air quality, and contribute to desertification by removing fertile topsoil. Moreover, the impacts of carbon emissions on deserts extend beyond ecological stability and have socio-economic implications. Many desert communities rely on agriculture and natural resources for their livelihoods. The destabilization of deserts due to carbon emissions can reduce agricultural productivity, increase food insecurity, and cause economic hardship for these communities. Additionally, people may be displaced from desert regions due to desertification, leading to increased migration and social instability. In conclusion, the stability of deserts is greatly affected by carbon emissions. They intensify desertification, alter precipitation patterns, increase the frequency and intensity of dust storms, and have socio-economic consequences. It is vital to address carbon emissions through climate change mitigation strategies to minimize these impacts and ensure the long-term stability of desert ecosystems and the communities dependent on them.
Q: What are the effects of carbon emissions on the stability of coastal ecosystems?
Carbon emissions have significant effects on the stability of coastal ecosystems. One of the primary consequences is ocean acidification, which occurs when excess carbon dioxide dissolves in seawater and lowers its pH. This acidification has detrimental effects on various marine organisms, particularly those that rely on calcium carbonate to build their shells, such as corals, oysters, and some types of plankton. As the water becomes more acidic, it becomes harder for these organisms to form and maintain their protective structures, leading to reduced growth rates, weakened shells, and increased vulnerability to predation and disease. Furthermore, carbon emissions contribute to global warming, resulting in rising sea levels and increased storm intensity. Coastal ecosystems, such as mangroves, salt marshes, and seagrass beds, act as buffers against storm surges and provide crucial habitat for many species. However, with rising sea levels, these ecosystems are at risk of being submerged, leading to the loss of their protective functions and the displacement of numerous plant and animal species. Additionally, climate change caused by carbon emissions alters ocean currents and disrupts the balance of nutrients in coastal waters. This can lead to changes in the distribution and abundance of marine species, affecting the entire food web. For instance, if certain species that serve as a food source or a predator are negatively impacted, it can cause a ripple effect throughout the ecosystem. Such disruptions can lead to reduced biodiversity, loss of key species, and ultimately, the collapse of entire coastal ecosystems. Overall, carbon emissions have far-reaching and detrimental effects on the stability of coastal ecosystems. It is crucial to reduce carbon emissions and mitigate the impacts of climate change to protect these fragile ecosystems and the countless species that depend on them.
Q: How does carbon impact the energy balance of the Earth?
Carbon impacts the energy balance of the Earth primarily through its role in the greenhouse effect. Carbon dioxide (CO2), a greenhouse gas, is released into the atmosphere through natural processes and human activities such as burning fossil fuels and deforestation. The greenhouse effect is a natural process where certain gases in the atmosphere trap heat from the sun, preventing it from escaping back into space. This process helps maintain a suitable temperature for life on Earth. However, excessive carbon emissions have enhanced the greenhouse effect, leading to global warming and climate change. When carbon dioxide and other greenhouse gases accumulate in the atmosphere, they trap more heat, causing the Earth's surface temperature to rise. This rise in temperature disrupts the energy balance of the planet. It contributes to the melting of polar ice caps, rising sea levels, and more frequent and severe extreme weather events. Furthermore, carbon affects the energy balance of the Earth by altering the carbon cycle. The carbon cycle is a natural process in which carbon is exchanged between the atmosphere, oceans, and land. However, human activities have significantly disrupted this cycle by releasing large amounts of carbon into the atmosphere, primarily through the burning of fossil fuels. Excessive carbon emissions result in an imbalance in the carbon cycle, as the natural processes that absorb and store carbon, such as photosynthesis and the ocean's ability to absorb CO2, cannot keep up with the pace of emissions. This leads to an accumulation of carbon dioxide in the atmosphere, further exacerbating the greenhouse effect and contributing to global warming. Overall, carbon significantly impacts the energy balance of the Earth by intensifying the greenhouse effect and disrupting the natural carbon cycle. It is crucial to reduce carbon emissions and transition to cleaner and more sustainable energy sources to mitigate the negative effects of carbon on the planet's energy balance and ultimately, preserve the health and stability of our environment.
Q: How can we reduce carbon emissions from transportation?
Reducing carbon emissions from transportation is crucial to mitigate climate change and improve air quality. There are several strategies that can be implemented to achieve this goal: 1. Promote the use of electric vehicles (EVs): Encouraging the adoption of electric cars, buses, and bikes can significantly reduce carbon emissions. Governments can provide incentives such as tax credits, rebates, and subsidies to make EVs more affordable. Expanding the charging infrastructure network is also essential to alleviate range anxiety and increase EV adoption. 2. Invest in public transportation: Enhancing and expanding public transportation systems can reduce the number of individual vehicles on the road, leading to fewer emissions. Governments should prioritize the development of efficient and accessible public transport networks, including buses, trains, and trams. 3. Encourage active transportation: Encouraging walking, cycling, and other forms of active transportation can significantly reduce carbon emissions from short-distance trips. Building safe and convenient infrastructure, such as bike lanes and pedestrian-friendly streets, can promote these modes of transport. 4. Improve fuel efficiency: Encouraging the production and purchase of vehicles with higher fuel efficiency standards can greatly reduce carbon emissions. Governments should implement strict regulations and offer incentives to manufacturers that produce fuel-efficient vehicles. 5. Develop and promote alternative fuels: Investing in the development and use of alternative fuels, such as biofuels, hydrogen, and renewable natural gas, can help reduce carbon emissions from transportation. Governments should provide incentives and support research and development efforts to accelerate the adoption of these cleaner fuels. 6. Implement congestion pricing and road tolls: Charging drivers for using congested roads or entering certain areas can reduce traffic congestion and encourage the use of public transportation or carpooling. By discouraging unnecessary car trips, carbon emissions can be significantly reduced. 7. Encourage telecommuting and flexible work arrangements: Promoting telecommuting and flexible work arrangements can reduce the number of commuting trips and, consequently, carbon emissions. Governments and businesses can provide incentives to encourage companies to adopt these practices. 8. Rethink urban planning: Designing cities and communities with mixed land-use patterns, where residential, commercial, and recreational areas are within close proximity, can reduce the need for long commutes and promote active transportation. 9. Raise awareness and provide education: Educating the public about the environmental impact of transportation choices and the benefits of sustainable modes of transport is crucial. Governments and organizations should launch campaigns to raise awareness and provide information about the carbon footprint of different transportation options. Reducing carbon emissions from transportation requires a multifaceted approach involving government policies, technological advancements, and changes in individual behavior. By implementing these strategies, we can make significant progress in reducing carbon emissions and creating a more sustainable transportation system.
Q: What is sintered carbon?
The process of choosing appropriate process and operating systems in accordance with the internal laws of the sintering process, the use of modern scientific and technological achievements, strengthening sintering production process, to obtain advanced technical and economic indicators, to ensure the realization of high yield, high quality and low consumption. The production process has the raw materials, against the ash, mixing, crushing and screening, crushing and screening solvent fuel proportioning, mixing, ignition, exhaust ventilation cooling, sintering, crushing and screening, dust and other aspects.
Q: What are the different types of carbon-based composites?
There are several different types of carbon-based composites, each with unique properties and applications. Some of the most common types include carbon fiber reinforced polymers (CFRPs), carbon nanotube composites, and carbon fiber reinforced ceramics. Carbon fiber reinforced polymers (CFRPs) are perhaps the most well-known and widely used carbon-based composites. They consist of carbon fibers embedded in a polymer matrix, such as epoxy resin. CFRPs are lightweight, yet incredibly strong and stiff, making them ideal for applications where weight reduction and high strength are crucial, such as aerospace, automotive, and sporting goods industries. Carbon nanotube composites are another type of carbon-based composite that have gained significant attention in recent years. Carbon nanotubes are cylindrical structures made of carbon atoms arranged in a hexagonal lattice. When incorporated into a composite material, they enhance its mechanical, thermal, and electrical properties. Carbon nanotube composites have potential applications in fields such as electronics, energy storage, and structural materials. Carbon fiber reinforced ceramics combine the high strength and stiffness of carbon fibers with the exceptional high-temperature resistance of ceramics. These composites are commonly used in industries that require materials capable of withstanding extreme temperatures, such as aerospace, defense, and nuclear sectors. Carbon fiber reinforced ceramics offer an excellent balance between strength, thermal stability, and low weight. Other types of carbon-based composites include carbon fiber reinforced metals, where carbon fibers are embedded in a metal matrix, and graphene composites, which incorporate graphene sheets into a polymer or metal matrix. These composites offer unique properties such as high electrical conductivity, thermal stability, and mechanical strength, opening up possibilities for applications in areas like electronics, energy storage, and structural materials. Overall, carbon-based composites offer a diverse range of properties and applications, making them invaluable materials in various industries that require lightweight, strong, and durable materials.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords