• CPC Low Sulfur Petroleum Coke Best Price System 1
  • CPC Low Sulfur Petroleum Coke Best Price System 2
  • CPC Low Sulfur Petroleum Coke Best Price System 3
CPC Low Sulfur Petroleum Coke Best Price

CPC Low Sulfur Petroleum Coke Best Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
3000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Quick Details

  • Place of Origin: Ningxia, China (Mainland)

  • Model Number: carbon 95%

  • Application: steel making

  • fix carbon content: 95%min

Packaging & Delivery

Packaging Details:Standard export packing 1.in one Ton bag 2.P.P. woven bag(25Kg) laminated with kraft paper inside 3.40bags x 25kg per one(1) metric ton bag 4.Other packing available on request
Delivery Detail:ASAP

 

 

Specifications 

CPC Low Sulfur Petroleum Coke Best Price

Petroleum coke products can be divided into needle coke, sponge coke, projectile coke and coke breeze four kinds.

Calcined Petroleum Coke

F.C.: 98.5%MIN

ASH: 0.8% MAX

V.M.: 0.7%MAX

S:0.5%MAX

Moisture: 0.5%MAX

Structure

CPC Low Sulfur Petroleum Coke Best Price

Shape: granule

  • Dimensions: 0-1mm, 1-5mm, 1-6mm, 2-8mm, etc

  • Product Type: Carbon Additive

  • C Content (%): 98-99.5% MIN

  • Working Temperature: -

  • S Content (%): 0.5%-0.7%MAX

  • Ash Content (%): 0.7%MAX

  • Volatile:0.8%MAX

  • Moisture: 0.5% MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

Feature

CPC Low Sulfur Petroleum Coke Best Price

Physics and chemistry performance :

Unit

Index

No.1

No.2

No.3

Density

g/cm3

2.04

2.00

2.00

sulphur content

%≤

0.5

1.0

2.5

volatility

%≤

0.5

0.5

0.5

ash content

%≤

0.5

0.5

0.5

moisture

%≤

0.3

0.5

0.5

charcoal

%≤

98.5

98.0

98.0

Image

CPC Low Sulfur Petroleum Coke Best Price

 

FAQ:

CPC Low Sulfur Petroleum Coke Best Price

How to classify calcined petroleum coke?

1) According to difference of sulfur content, can be divided into high sulfur coke (sulfur content more than 4%), sulphur in coke sulfur content (2% 4%) and low sulfur coke (sulfur content below 2%).

2) Petroleum coke products can be divided into needle coke, sponge coke, projectile coke and coke breeze four kinds:

3) Needle coke, has obvious needle-like structure and fiber texture, mainly used for steel-making in high power and ultra-high power graphite electrode. As a result of needle coke in sulfur content, ash content, volatile matter and true density and so on have strict quality requirements, so the production process of needle coke and raw materials have special requirements.

4) The sponge coke, high chemical reactivity, low content of impurities, mainly used in the aluminum industry and carbon industry.

5) Focal or spherical coke: the projectile shape is round, diameter 0.6-30 mm, usually from the production of high sulphur, high asphaltic residual oil, can only be used as industrial fuel power generation, cement etc.

6) Coke breeze: fluidized coking process, the fine particles (0.1- 0.4 mm) in diameter, high volatile, high expansion coefficient, cannot be directly used for electrode preparation and carbon industry.

 

Advantage:

CPC Low Sulfur Petroleum Coke Best Price

1. High quality and competitive price.

2. Timely delivery.

3. If any item you like. Please contact us.

Your sincere inquiries are typically answered within 24 hours.

 

  

Q: How is carbon formed?
Carbon is formed through various natural processes, primarily through the decay and decomposition of organic matter such as plants and animals. Additionally, carbon can be formed through volcanic activity and the burning of fossil fuels.
Q: How many points can Yongan change for 1 carbon coins?
Every Thursday at 19:00, carbon points change for carbon coins, 19:30 carbon coins exchange gifts
Q: What are the sources of carbon emissions?
Carbon emissions are primarily caused by human activities that involve the burning of fossil fuels such as coal, oil, and natural gas. The largest source of carbon emissions is the burning of fossil fuels for electricity generation, transportation, and industrial processes. Power plants that burn coal and natural gas account for a significant portion of carbon emissions, as do vehicles that run on gasoline and diesel fuels. Industrial processes, particularly in sectors such as cement production and steel manufacturing, also contribute to carbon emissions. These processes release carbon dioxide (CO2) during the chemical reactions involved in the production of these materials. Deforestation and land-use changes are another significant source of carbon emissions. When forests are cleared, the carbon stored in trees is released into the atmosphere as CO2. Additionally, the loss of forests reduces the Earth's capacity to absorb CO2 through photosynthesis, exacerbating the problem. Agricultural activities, particularly livestock farming, contribute to carbon emissions through the release of methane (CH4) from the digestive systems of animals and the decay of organic matter. The use of synthetic fertilizers in agriculture also contributes to carbon emissions as they release nitrous oxide (N2O), a potent greenhouse gas. Other sources of carbon emissions include waste management practices, particularly the decomposition of organic waste in landfills, and certain industrial processes that release other greenhouse gases such as hydrofluorocarbons (HFCs) and sulfur hexafluoride (SF6). It is important to note that while carbon emissions are predominantly caused by human activities, natural processes such as volcanic eruptions and wildfires also release carbon dioxide into the atmosphere. However, these natural sources are significantly smaller compared to human-induced emissions.
Q: What is carbon sequestration and how does it work?
Carbon sequestration refers to the process of capturing and storing carbon dioxide (CO2) from the atmosphere to mitigate climate change. It works by removing CO2 emissions either directly from the source, such as power plants or industrial facilities, or indirectly by planting trees and restoring ecosystems that naturally absorb CO2. The captured CO2 is then stored underground, in depleted oil and gas fields, deep saline aquifers, or through mineralization processes. By reducing the amount of CO2 in the atmosphere, carbon sequestration helps to reduce greenhouse gas levels and slow the progression of global warming.
Q: Isotopes of carbon
First, 14C dating method14C is the nature of the cosmic rays and atmospheric nitrogen produced by nuclear reactions. The carbon -14 not only exists in the atmosphere, with the absorption and metabolism of the organism, through the food chain into animal or human living organisms. All because of carbon in the generation side and the -14 side, at a constant rate decay, resulting in carbon -14 in nature (including all organisms) ratio and the content of carbon stable isotope -12 content remained unchanged.When the organism dies, due to the decay of carbon The new supersedes the old. stop, the decrease of -14, so the relative ratio of -14 and -12 in carbon carbon content corresponding decrease. By determination of biological fossils unearthed in the medium carbon -14 and carbon content of -12, can accurately calculate the death of the organisms (i.e. survival) in a given organism unearthed. For example the fossil, M grams of carbon (or carbon determination of the quality of -12), according to the relative ratio of various carbon isotope content of nature can be calculated, the organism is alive, the quality of carbon -14 should be m grams. But the actual measured carbon quality of -14 only m grams of 1/8, according to the half-life the biological death has been 3 for 5730 years, has been dead for seventeen thousand two hundred and ninety years. The United States radiochemist W.F. Libby has invented the method of radioactive dating, made outstanding contributions to Archaeology He was awarded the Nobel prize for chemistry in 1960Because of the very low carbon content of -14, and the half-life is very long, so -14 can accurately measure the carbon 5 to within 60 thousand years of the unearthed cultural relics, for older unearthed cultural relics, such as living in five hundred thousand years ago, Zhoukoudian Beijing man, using carbon -14 dating method is not determined to.
Q: What is coal?
Coal is a black or brownish-black sedimentary rock that is primarily composed of carbon, along with various other elements such as hydrogen, sulfur, oxygen, and nitrogen. It is formed from the remains of plants that lived and died millions of years ago, accumulating in swampy environments. Over time, the layers of plant material were subjected to high pressure and heat, resulting in the formation of coal. Coal is one of the most abundant fossil fuels on Earth and has been used as a source of energy for centuries. It is typically extracted from underground or surface mines and can be found in different forms, including anthracite, bituminous, sub-bituminous, and lignite, with varying carbon content and heating value. Due to its high carbon content, coal is primarily used for electricity generation and as a fuel for industrial processes. When burned, it releases energy in the form of heat, which is converted into electricity through steam turbines. However, burning coal also releases greenhouse gases and other pollutants, contributing to air pollution and climate change. In addition to its use as a fuel, coal is also used in the production of steel and cement, as well as in various industrial processes. It is a versatile resource that has played a significant role in the development of modern societies, but its environmental impact and finite nature have led to increased efforts to shift towards cleaner and more sustainable energy sources.
Q: How can carbon be stored underground?
Carbon can be stored underground through a process called carbon capture and storage (CCS). This involves capturing carbon dioxide emissions from industrial processes or power plants, compressing it into a liquid form, and injecting it into deep underground geological formations, such as depleted oil and gas reservoirs or saline aquifers. The carbon dioxide is then trapped underground, preventing it from entering the atmosphere and contributing to climate change.
Q: How is carbon used in the production of carbon nanowires?
Carbon's unique properties make it a key component in the production of carbon nanowires. These nanowires are typically created through a process called chemical vapor deposition (CVD), in which a carbon-containing precursor gas is decomposed in a high-temperature environment. To carry out this process, a reaction chamber is utilized, where a carbon source like methane or ethylene is introduced. The precursor gas is then heated to a temperature above 600 degrees Celsius, causing it to decompose. This results in the release of carbon atoms that begin to deposit on a substrate material, such as a silicon wafer or metal catalyst. The carbon atoms in the precursor gas tend to form strong covalent bonds with each other, leading to the formation of a graphite-like structure. However, by carefully controlling the growth conditions, including temperature and pressure, the deposited carbon atoms can be arranged in a highly ordered manner to form nanowires. The use of carbon as the fundamental building block for nanowires offers several advantages, including exceptional thermal and electrical conductivity, as well as high mechanical strength. These properties enable carbon nanowires to exhibit unique characteristics, making them suitable for a wide range of applications, such as electronics, energy storage, and sensors. Overall, carbon plays a crucial role in the production of carbon nanowires as the raw material that undergoes decomposition and subsequent rearrangement to achieve the desired nanoscale structures.
Q: What's the difference between carbon steel pipes and stainless steel pipes and seamless steel tubes?
Carbon steel pipe and stainless steel pipe with the material classification, and the seamless steel tube is shaped by divided categories.
Q: Can carbon in barbecue cause cancer? Can carbonated food cause cancer?
It will be。WHO published 3 years of research results, said barbecue foods produce carcinogenic substances are toxic, "eat barbecue, equivalent to smoking."". A US research center report even said eating a roast chicken leg is equivalent to the toxicity of 60 cigarettes; women who eat barbecue are 2 times more likely to develop breast cancer than other women.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords