• Deformed Steel Bar, Concrete Reinforcing Steel Rebars System 1
  • Deformed Steel Bar, Concrete Reinforcing Steel Rebars System 2
  • Deformed Steel Bar, Concrete Reinforcing Steel Rebars System 3
Deformed Steel Bar, Concrete Reinforcing Steel Rebars

Deformed Steel Bar, Concrete Reinforcing Steel Rebars

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Product Description:

OKorder is offering Deformed Steel Bar, Concrete Reinforcing Steel Rebars at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Deformed Steel Bar, Concrete Reinforcing Steel Rebars are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Deformed Steel Bar, Concrete Reinforcing Steel Rebars are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335,HRB400,HRB500

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

DEFORMED BAR
SIZE
d(mm)
theoretical
kg/m
60.222
80.395
100.617
120.888
141.21
161.58
182
202.47
222.98
253.85
284.83
326.31

 

FAQ:

Q1: what is the difference between actual weight and theoretical weight?

A1: All the section steel has two weights: actual weight and theoretical weight. Actual weight is the weighing out when the product delivered from the mill. Theoretical weight is calculated by pieces.  The invoice can be based on each of them as your request.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Q:What are steel rebars?
Steel rebars are reinforced steel bars that are commonly used in construction projects to provide strength and stability to concrete structures. They are typically placed within the concrete to enhance its load-bearing capacity and help prevent cracks or failures. Rebars are made from high-strength steel and are available in various sizes and shapes to cater to different construction needs.
Q:Why is thread steel thinner than crude?
Because the surface has a thread shape, it can increase the firm bond with the concrete. The longitudinal reinforcement and stirrups shall be used preferentially in the concrete members. Because the rebar is low alloy steel and its price is higher than that of low carbon round steel, the construction unit or design unit usually starts from the practical angle of the general civil building
Q:Can steel rebars be used in structures with high levels of carbonation or acid attack?
No, steel rebars should not be used in structures with high levels of carbonation or acid attack. Steel is susceptible to corrosion in acidic environments, and high carbonation levels can increase the acidity of the surroundings. In such conditions, alternative materials that are resistant to corrosion and acid attack, such as stainless steel or fiber-reinforced polymers, should be considered for structural reinforcement.
Q:How do steel rebars affect the overall crack resistance of concrete structures?
Steel rebars play a crucial role in enhancing the crack resistance of concrete structures. When embedded within the concrete, rebars provide reinforcement and increase the tensile strength of the structure. Concrete is inherently strong in compression but weak in tension, and steel rebars help overcome this weakness by absorbing the tensile forces that may cause cracks in the concrete. The presence of rebars in concrete structures allows for the redistribution of stress, preventing cracks from propagating and spreading. As the concrete undergoes shrinkage or experiences external loads, the rebars act as a reinforcement grid and help to resist the formation and expansion of cracks. By absorbing and distributing the tensile stresses, rebars ensure that the concrete remains intact and can withstand higher loads without significant cracking. Moreover, steel rebars also contribute to the overall durability of concrete structures. When corrosion of the rebars occurs due to exposure to moisture or other environmental factors, it can lead to an increase in volume, causing internal pressure and potential cracking of the concrete. However, the use of corrosion-resistant rebars, such as epoxy-coated or stainless steel rebars, can significantly mitigate this risk and improve the crack resistance of the structure. In summary, steel rebars enhance the crack resistance of concrete structures by providing reinforcement, increasing tensile strength, redistributing stress, and preventing crack propagation. Their presence ensures that the structure can withstand various types of loads and environmental conditions, improving both the strength and durability of the concrete.
Q:What is the average lifespan of steel rebars in concrete structures?
The average lifespan of steel rebars in concrete structures can vary depending on various factors such as the quality of the steel, environmental conditions, and maintenance practices. However, under normal conditions, steel rebars in concrete structures are expected to have a lifespan of around 50 to 100 years.
Q:How are steel rebars connected or joined together during construction?
Steel rebars are typically connected or joined together during construction by overlapping the ends of the rebars and tying them using steel wire or using mechanical couplers.
Q:Can steel rebars be used in architectural or decorative concrete applications?
Yes, steel rebars can be used in architectural or decorative concrete applications. They provide structural reinforcement and enhance the overall strength and durability of the concrete. Additionally, when properly designed and installed, steel rebars can be concealed or incorporated into the design, making them suitable for various aesthetic purposes in architectural or decorative concrete projects.
Q:Can steel rebars be used in historical building restoration?
Yes, steel rebars can be used in historical building restoration. Rebars are commonly used in construction to reinforce concrete structures and provide additional strength and durability. When it comes to historical building restoration, the goal is to preserve the original character and aesthetics of the structure while ensuring its structural integrity. Steel rebars can be carefully integrated into the restoration process to strengthen weak areas or replace deteriorated or damaged sections. The use of rebars allows for a more stable and long-lasting structure, ensuring the building's longevity for future generations. However, it is important to ensure that the use of steel rebars in historical building restoration is done in a way that respects the historical significance of the structure. The integration of rebars should be done discreetly, ensuring they do not compromise the building's original appearance or architectural features. Additionally, any restoration work on historical buildings should adhere to strict preservation guidelines and be carried out by skilled professionals with expertise in historical preservation. This ensures that the restoration process maintains the historical integrity of the building while incorporating necessary structural reinforcements, such as steel rebars.
Q:Are steel bars used more in high-rise buildings or steel?
Look at the architectural design requirements and seismic grade, light steel reinforcement is mainly stirrups, columns, beams, shear walls generally use thread steel, plate bars and distribution bars are generally cold and twisted steel bars
Q:How do steel rebars affect the acoustic properties of a structure?
Steel rebars can have a significant impact on the acoustic properties of a structure. Due to their high density and rigidity, steel rebars can act as conductors of sound and vibrations. This means that when sound waves or vibrations encounter steel rebars, they can easily be transmitted through them, resulting in increased noise levels and reduced acoustic insulation. In terms of airborne sound transmission, steel rebars can create a direct pathway for sound waves to travel through a structure. This can lead to the amplification of sound, especially in areas where rebars are in direct contact with walls or floors. As a result, the overall acoustic quality of the structure may be compromised, causing increased noise levels and decreased speech intelligibility. Steel rebars can also affect the structure's ability to block impact or structure-borne noise. When vibrations are generated, for example, from footsteps or machinery, the rigid steel rebars can efficiently transmit these vibrations throughout the structure. This can result in the amplification and propagation of structure-borne noise, making it more perceptible in different areas of the building. To mitigate the negative effects of steel rebars on the acoustic properties of a structure, various techniques can be employed. One common method is to use acoustically decoupled materials or resilient mounts to isolate the rebars from the surrounding structure, reducing the transmission of vibrations. Additionally, incorporating sound-absorbing materials, such as acoustic panels or insulation, can help to absorb and dampen sound waves, improving the overall acoustic performance of the space. Overall, steel rebars can have a significant impact on the acoustic properties of a structure. Their high density and rigidity make them efficient conductors of sound and vibrations, potentially leading to increased noise levels and reduced acoustic insulation. Therefore, careful consideration of acoustic design and appropriate use of soundproofing measures are essential in minimizing the adverse effects of steel rebars on the acoustic quality of a building.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords