• Carbon Additive High FC 90%/CNBM China Product System 1
  • Carbon Additive High FC 90%/CNBM China Product System 2
  • Carbon Additive High FC 90%/CNBM China Product System 3
Carbon Additive High FC 90%/CNBM China Product

Carbon Additive High FC 90%/CNBM China Product

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

Calcined Anthracite Coal 
Fixed carbon: 90%-95% 
S: 0.5% max 
Size: 0-3. 3-5.3-15 or as request 

Packaging & Delivery

Packaging Details:1. carbon additive in 1 MT jumbo bag 2. carbon additive in 25kg PP bag 3. carbon additive in 50 kg woven bag 4. carbon additive in bags then put them on pallet 5.bulk in container 6.as your requirements
Delivery Detail:within 10 days after receiving 30% deposit or LC


Product Description

Carbon additive (carbon raiser) with characteristic of low ash and low sulfur is made from calcined petroleum coke, graphite petroleum coke or high quality anthracite coal . As an ideal  recarburizer  and intermediate reactor, it has been widely used in different industries like metallurgy, chemistry, machinery, electricity, etc.

 

The selection of a charging carbon is determined by the quality requirements of the steel or ferroalloy production as well as the cost and availability of carbon products. So the recarburizer is mainly used  in the metallurgy to increase the content of carbon. 


General Specification of Calcined Anthracite coal

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

Size can be adjusted based on buyer's request.


Pictures of Calcined AnthraciteCoal




Q:What is the burning point of carbon?
There are many forms of carbon, such as charcoal, coal, and even diamonds!And different forms have different ignition points!
Q:What is the carbon cycle?
The movement of carbon dioxide (CO2) between the atmosphere, land, bodies of water, and living organisms comprises the natural process known as the carbon cycle. It serves as a crucial component of Earth's ecosystem, playing a vital role in regulating the planet's climate. The carbon cycle commences with plants absorbing CO2 through photosynthesis. CO2 is taken in from the atmosphere and transformed into organic compounds, such as glucose, used for growth and energy. This process is referred to as carbon fixation. Animals and other consumers acquire carbon by consuming plants or other animals that have already incorporated carbon into their tissues. When plants and animals respire, they release CO2 back into the atmosphere, completing the initial stage of the cycle. Decomposers, including bacteria and fungi, contribute to another pathway in the carbon cycle by decomposing organic matter. During decomposition, carbon is released as CO2 or enters the soil as organic carbon. This stored carbon can later be released into the atmosphere through microbial respiration or erosion. The exchange of carbon between the atmosphere and bodies of water is also involved in the carbon cycle. When CO2 dissolves in water, it forms carbonic acid, leading to ocean acidification. Marine plants, such as algae and phytoplankton, play a critical role in the cycle by photosynthesizing and absorbing CO2 from the water. Geological processes, such as volcanic activity and weathering, additionally release carbon into the atmosphere. Over extended periods, carbon can be stored in the Earth's crust as fossil fuels like coal, oil, and natural gas. The burning of these fossil fuels for energy releases significant amounts of CO2, contributing to the greenhouse effect and climate change. The carbon cycle is an ongoing and intricate process that maintains a delicate balance of carbon in the Earth's atmosphere and ecosystems. However, human activities, particularly the burning of fossil fuels and deforestation, have profoundly disrupted this balance by releasing excessive amounts of CO2 into the atmosphere. This disruption has resulted in global warming and other environmental issues, underscoring the importance of comprehending and mitigating human impacts on this crucial natural process.
Q:What are the consequences of increased carbon emissions on human health?
Increased carbon emissions have numerous consequences on human health. Firstly, carbon emissions contribute to the formation of air pollution, specifically fine particulate matter (PM2.5) and ground-level ozone, which can lead to respiratory issues such as asthma, bronchitis, and other respiratory diseases. Additionally, exposure to air pollution from carbon emissions has been linked to an increased risk of cardiovascular diseases, including heart attacks and strokes. Moreover, carbon emissions contribute to climate change, resulting in more frequent and intense heatwaves, extreme weather events, and the spread of infectious diseases. These phenomena can have direct and indirect impacts on human health, leading to heat-related illnesses, injuries, mental health issues, and the displacement of communities. Overall, the consequences of increased carbon emissions on human health are significant and require urgent action to mitigate their effects.
Q:What is carbon fiber and how is it used?
Made from thin strands of carbon atoms bonded together in a specific pattern, carbon fiber is a material that is both lightweight and incredibly strong. Its exceptional strength-to-weight ratio surpasses that of steel, while its weight is significantly lighter. The unique properties of carbon fiber make it widely used across various industries and applications. In the aerospace industry, it is a common choice for constructing aircraft components such as wings, fuselage sections, and engine parts. Its strength and lightness contribute to better fuel efficiency and overall performance. The automotive industry heavily relies on carbon fiber for manufacturing high-performance vehicles. Carbon fiber reinforced composites are utilized in the production of body panels, chassis components, and interior trims. By reducing the overall weight of vehicles, carbon fiber not only enhances structural integrity but also improves handling and fuel efficiency. Sports equipment manufacturers also incorporate carbon fiber into the production of sporting goods like tennis rackets, golf clubs, bicycles, and hockey sticks. The material's strength and stiffness result in improved performance, increased power transfer, and enhanced durability. Additionally, carbon fiber finds applications in the construction industry for reinforcing concrete structures, as well as in the manufacturing of wind turbine blades, boat hulls, and various other industrial components. Overall, carbon fiber is the preferred choice in industries requiring high-performance materials due to its exceptional strength, lightweight nature, and versatility. As advancements in manufacturing techniques and cost reduction efforts continue, its use is expanding to a wider range of applications.
Q:What are the effects of carbon emissions on human respiratory health?
Carbon emissions have significant negative effects on human respiratory health. Exposure to high levels of carbon emissions, particularly from sources such as air pollution and vehicle exhaust, can lead to various respiratory issues. These emissions contain harmful pollutants like particulate matter, nitrogen dioxide, and sulfur dioxide, which can irritate the respiratory system and cause or exacerbate conditions such as asthma, bronchitis, and other respiratory diseases. Prolonged exposure to carbon emissions can also increase the risk of respiratory infections, reduce lung function, and contribute to the development of chronic respiratory illnesses. Additionally, carbon emissions contribute to climate change, which can worsen air quality and further impact respiratory health. Therefore, reducing carbon emissions is crucial for protecting and improving human respiratory health.
Q:What are the consequences of increased carbon emissions on urban areas?
Increased carbon emissions have numerous consequences on urban areas. Firstly, it leads to a rise in air pollution, contributing to respiratory issues and increased health risks for the population. Additionally, carbon emissions contribute to the greenhouse effect, leading to higher temperatures and exacerbating the urban heat island effect, which can result in discomfort, heat-related illnesses, and increased energy demands for cooling. Moreover, increased carbon emissions contribute to climate change, leading to more frequent and intense extreme weather events like storms and heatwaves, which pose significant threats to urban infrastructure, public safety, and economic stability. Overall, the consequences of increased carbon emissions on urban areas are detrimental to both the environment and human well-being.
Q:Can carbon in barbecue cause cancer? Can carbonated food cause cancer?
Eat barbecue are carcinogenic, because the meat directly on the heat under the grill, the decomposition of fat droplets in the charcoal, and then with the meat proteins, it will produce a carcinogen called benzopyrene. Experts explained that if people regularly eat food contaminated by benzopyrene, carcinogens can accumulate in the body and cause stomach cancer and bowel cancer.
Q:What are the advantages of carbon-based solar cells?
There are several advantages of carbon-based solar cells that make them a promising technology for renewable energy production. Firstly, carbon-based solar cells are lightweight and flexible, which makes them highly versatile in terms of deployment options. They can be integrated into various surfaces, such as building facades, windows, or even clothing, expanding the possibilities for solar energy generation. Secondly, carbon-based solar cells have a low environmental impact compared to traditional silicon-based solar cells. The production process of carbon-based solar cells usually involves less energy consumption and fewer toxic materials, reducing the overall carbon footprint of the technology. Additionally, carbon-based solar cells have a shorter energy payback time, meaning they reach the point of generating more energy than it takes to produce them faster than silicon-based solar cells. Another advantage of carbon-based solar cells is their potential for low-cost manufacturing. Carbon-based materials, such as organic polymers or perovskites, can be produced through cost-effective techniques like solution processing or printing methods. This scalability and affordability make carbon-based solar cells an attractive option for large-scale deployment, which can help accelerate the global adoption of solar energy. Furthermore, carbon-based solar cells have the potential for improved performance in low-light conditions. Due to their unique properties, such as the ability to absorb a broader range of light wavelengths, they can generate electricity even in cloudy or indoor environments. This makes carbon-based solar cells suitable for a wider range of applications, including indoor electronics, wearable devices, or even integration into urban infrastructure. Lastly, the biodegradability of some carbon-based materials used in solar cells makes them more environmentally friendly. As the world moves towards a circular economy and strives for sustainable solutions, the ability to recycle or dispose of solar cells without causing harm to the environment becomes increasingly important. In summary, carbon-based solar cells offer advantages such as flexibility, low environmental impact, low-cost manufacturing, improved performance in low-light conditions, and biodegradability. These advantages make them a promising technology for realizing a sustainable and widely accessible solar energy future.
Q:What is the greenhouse effect?
The greenhouse effect is a natural process that occurs when certain gases in the Earth's atmosphere trap heat from the sun and prevent it from escaping back into space. These gases, such as carbon dioxide (CO2), methane (CH4), and water vapor, act like a blanket, allowing sunlight to pass through but trapping the heat that is radiated back from the Earth's surface. This process is essential for the Earth's survival as it helps to maintain a relatively stable and habitable temperature range. Without the greenhouse effect, the Earth's average temperature would be much colder, making it uninhabitable for most life forms. However, human activities, such as burning fossil fuels, deforestation, and industrial processes, have significantly increased the concentration of greenhouse gases in the atmosphere. This excess of greenhouse gases intensifies the greenhouse effect, leading to a phenomenon known as global warming. Global warming refers to the gradual increase in the Earth's average temperature, primarily caused by human-induced greenhouse gas emissions. This rise in temperature has far-reaching consequences, including melting ice caps, rising sea levels, extreme weather events, and disruption of ecosystems. The greenhouse effect itself is a natural and necessary process, but the enhanced greenhouse effect caused by human activities is contributing to climate change. Therefore, it is crucial to reduce greenhouse gas emissions and adopt sustainable practices to mitigate the adverse effects of global warming.
Q:What are the effects of carbon emissions on the stability of ice shelves?
Carbon emissions contribute to global warming, which in turn leads to the melting of ice shelves. As carbon dioxide is released into the atmosphere, it acts as a greenhouse gas, trapping heat and causing a rise in temperature. This increase in temperature accelerates the melting of ice shelves, ultimately destabilizing them. The loss of ice shelves disrupts the delicate balance of the polar regions, leading to rising sea levels and increased risk of coastal flooding. Additionally, the melting of ice shelves can also contribute to the release of large quantities of freshwater into the ocean, potentially affecting ocean currents and disrupting marine ecosystems. Overall, carbon emissions have a significant negative impact on the stability of ice shelves and the overall health of our planet.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products