• 30-80mm Low Ash 12.5%Met Coke for Steel Plant System 1
  • 30-80mm Low Ash 12.5%Met Coke for Steel Plant System 2
30-80mm Low Ash 12.5%Met Coke for Steel Plant

30-80mm Low Ash 12.5%Met Coke for Steel Plant

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1200 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

    Met Coke(metallurgical coke) is a carbon material resulting from the manufactured purification of multifarious blends of bituminous coal. In its natural form, bituminous coal is soft; its medium-grade composite contains a high occurrence of unstable components. The majority of the unstable components are either reclaimed or recycled.

Features

    It is widely used in casting and metallurgy Smelting every tons Irons need about 0.4 to 0.6ton coke. As the reducing agent in the steel-making and foundry industry.

Specification

Item

No.

Ash

(%)

max

S

(%)

max

F.C.

(%)

min

V.M

(%)

max

Moisture

(%)

max

P

(%)

max

CSR

(%)

min

CRI

(%)

max

Cal.Value

(≥Kcal/Kg)

NF-M001

9

0.6

89.5

1.2

5

0.035

65

25

7250

NF-M002

10.5

0.6

88

1.2

5

0.035

65

25

7100

NF-M003

12

0.6

86.5

1.5

5

0.035

63

28

6900

NF-M004

13

0.6

85.5

1.5

5

0.035

60

30

6800

Pictures

30-80mm Low Ash 12.5%Met Coke for Steel Plant

30-80mm Low Ash 12.5%Met Coke for Steel Plant



 

FAQ

1 What is the packing?

Packaging   Details:

1. jumbo   ton bag
  2. 25kg pp bag in ton bag
  3. 25kg pp bag on pallet
  4. as the customers' requirements

2 Delivery   time?

Delivery   Detail:

 

15 days   after we get the advanced payment or original L/C

 

Q:What are the effects of carbon emissions on the stability of grasslands?
Carbon emissions can have various negative effects on the stability of grasslands. Increased levels of carbon dioxide in the atmosphere can contribute to climate change, resulting in altered precipitation patterns and increased temperatures. These changes can cause shifts in grassland ecosystems, leading to reduced plant productivity, changes in species composition, and even the loss of grassland habitats. Additionally, carbon emissions can indirectly impact grasslands by contributing to the acidification of rain, which can harm soil health and hinder the growth of grasses. Overall, carbon emissions pose a significant threat to the stability and resilience of grassland ecosystems.
Q:How much carbon does it take for 4 people to barbecue?!
Hello The amount of charcoal is according to the number, the number of barbecue barbecue food and other circumstances, the amount of each person is different, generally 6 pounds of charcoal enough for 3-5 to use, recommended to get for a little extra, so is not enough, the charcoal is not expired, can not run out of the next and then, put in the house you can also clean the indoor air.
Q:How does carbon affect the acidity of oceans?
The acidity of oceans is greatly influenced by carbon dioxide (CO2). Human activities like burning fossil fuels and deforestation release CO2 into the atmosphere, a significant portion of which is absorbed by the oceans. This absorption, known as ocean acidification, causes an increase in hydrogen ions in the water, leading to lower pH levels and higher acidity. When CO2 dissolves in seawater, it combines with water molecules to create carbonic acid (H2CO3). This chemical reaction releases hydrogen ions (H+), which elevate the water's acidity. The increased acidity disrupts the delicate chemical balance necessary for life in the ocean, especially reactions involving calcium carbonate. Calcium carbonate plays a vital role in the formation of shells and skeletons for various marine organisms, such as corals, shellfish, and certain plankton. As ocean acidity rises, it becomes more challenging for these creatures to construct and maintain their calcium carbonate structures. This can result in stunted growth, weakened shells, and heightened susceptibility to predators and diseases. Ocean acidification also has implications for the entire marine food chain. Many species depend on shell-forming organisms as a food source or as habitats, and their decline can have a ripple effect on the entire ecosystem. Additionally, acidification can disrupt the balance of phytoplankton, which are microscopic plants crucial for marine food chains. Furthermore, carbon dioxide in the ocean can interact with water to generate bicarbonate ions (HCO3-) and carbonate ions (CO32-). These ions are crucial for maintaining proper pH levels and enabling marine organisms to regulate their internal chemistry. However, as CO2 levels increase, the concentration of carbonate ions decreases, making it more challenging for organisms to obtain the carbonate they need to build their shells and skeletons. Overall, the impact of carbon on ocean acidity is significant and has far-reaching consequences for marine life. It is essential to reduce carbon emissions and implement measures to mitigate and adapt to the effects of ocean acidification in order to safeguard the health and biodiversity of our oceans.
Q:What is carbon neutral construction?
Carbon neutral construction entails a sustainable approach to constructing and designing structures that aims to minimize or counterbalance the amount of carbon emissions generated during the construction process. The objective is to achieve equilibrium between the carbon emissions released into the atmosphere and those that are eliminated or offset through various measures. To accomplish carbon neutrality in construction, several strategies can be employed. Firstly, the implementation of energy-efficient design principles helps reduce the overall energy consumption of the building. This includes incorporating insulation, efficient HVAC systems, and energy-saving appliances and lighting. In addition, sustainable building materials are utilized, such as recycled materials or those with a minimal carbon footprint. This decreases the energy required for material production and transportation, thus minimizing carbon emissions. Moreover, renewable energy sources are integrated into the construction process. This may involve the installation of solar panels, wind turbines, or geothermal systems to generate clean energy for the building's operations. By reducing reliance on fossil fuels, carbon emissions associated with energy consumption are significantly decreased. Carbon offsetting is another crucial element of carbon neutral construction. This entails investing in projects or initiatives that reduce or eliminate greenhouse gas emissions elsewhere, thereby compensating for the emissions produced during construction. Examples of carbon offsetting activities include reforestation projects, investment in renewable energy initiatives, or support for methane capture programs. Ultimately, carbon neutral construction aims to minimize the environmental impact of building construction and operation by reducing carbon emissions throughout the entire lifespan of the building. By adopting energy-efficient design principles, utilizing sustainable materials, integrating renewable energy sources, and offsetting carbon emissions, carbon neutral construction contributes to the mitigation of climate change and the creation of a more sustainable future.
Q:What are the advantages of carbon-based fertilizers?
Farmers and gardeners favor carbon-based fertilizers for several reasons. Firstly, these fertilizers, such as compost and manure, are organic and derived from natural sources, devoid of synthetic chemicals. This eco-friendly quality reduces the risk of water pollution and soil degradation. Secondly, carbon-based fertilizers contain ample organic matter, enhancing soil structure and water retention. This proves especially helpful in areas with infertile soil or frequent droughts, as it conserves moisture and prevents nutrient loss. Furthermore, these fertilizers foster the growth of beneficial microorganisms in the soil. These microorganisms gradually break down organic matter, releasing essential nutrients and ensuring a steady supply to plants. The result is improved plant health and a decreased likelihood of nutrient imbalances or deficiencies. Additionally, carbon-based fertilizers prove cost-effective in the long run. Though they may require more effort and time initially, they can be produced on-site through composting or sourced locally from farms or livestock operations. This reduces the need for expensive chemical fertilizers and minimizes transportation costs. Lastly, carbon-based fertilizers aid in carbon sequestration and contribute to combating climate change. By utilizing organic waste materials as fertilizers, they divert them from landfills, where they would emit greenhouse gases. Instead, they are recycled into the soil, increasing its carbon content and promoting soil health. In summary, carbon-based fertilizers offer numerous advantages in terms of sustainability, soil fertility, cost-effectiveness, and environmental impact. Their usage can yield healthier plants, improved soil quality, and a more sustainable and resilient agricultural system.
Q:Why can carbon fiber in addition to static electricity ah?
The elimination of electricity is based on the leakage of charge. The carbon fiber has a weak corona discharge, so it combines the charge.
Q:What is the carbon footprint?
The carbon footprint is a measure of the total greenhouse gas emissions, especially carbon dioxide, produced directly and indirectly by an individual, organization, event, or product. It represents the impact of human activities on climate change and is usually expressed in metric tons of carbon dioxide equivalent per year.
Q:What are the properties of carbon-based lubricants?
Hydrocarbon-based lubricants, or carbon-based lubricants, possess a multitude of unique characteristics that contribute to their high effectiveness in a variety of applications. To begin with, these lubricants demonstrate exceptional thermal stability, enabling them to maintain their lubricating qualities even when subjected to elevated temperatures. This particular feature holds significant importance in industries like aerospace and automotive, where components often operate under extreme conditions. In addition, carbon-based lubricants exhibit outstanding lubricity, effectively reducing friction and wear between moving parts. This attribute is of utmost importance in machinery and equipment, as minimizing friction is crucial for ensuring smooth operation and preventing damage. Furthermore, these lubricants have the ability to bear heavy loads, preventing metal-to-metal contact that can result in premature wear and failure. Furthermore, carbon-based lubricants demonstrate excellent resistance to oxidation, effectively preventing the formation of harmful sludge and deposits that could potentially disrupt machinery performance. This characteristic extends the lifespan of the lubricant, guaranteeing long-term effectiveness and reducing the frequency of lubricant replacements. Moreover, these lubricants possess low volatility, meaning they have a minimal tendency to evaporate. This particular quality proves advantageous in applications where minimizing lubricant loss is essential, such as in sealed systems or high-temperature environments. Additionally, carbon-based lubricants generally exhibit compatibility with a wide range of materials, including metals, plastics, and elastomers. This compatibility ensures that the lubricant does not cause any damage or degradation to the surfaces it comes into contact with, allowing for versatile use across various industries and applications. All in all, the unique properties of carbon-based lubricants, including thermal stability, lubricity, load-carrying capacity, oxidation resistance, low volatility, and material compatibility, make them highly desirable for a wide array of lubrication needs, spanning from automotive and industrial machinery to aerospace and marine applications.
Q:How does carbon dating work?
Carbon dating is a scientific technique used to determine the age of organic materials, such as plants, animals, and human remains. It relies on the fact that carbon-14, a radioactive isotope of carbon, is constantly formed in the atmosphere by cosmic rays. While carbon-14 is present in the atmosphere, it is also absorbed by living organisms through photosynthesis or consumption of other organisms. The ratio of carbon-14 to stable carbon isotopes (carbon-12 and carbon-13) in the atmosphere remains relatively constant, as living organisms maintain a constant level of carbon-14 by exchanging it with the atmosphere through respiration or consumption. However, when an organism dies, it no longer takes in carbon-14, and the existing carbon-14 begins to decay at a predictable rate. Carbon-14 has a half-life of approximately 5,730 years, meaning that after this time, half of the carbon-14 in a sample will have decayed into nitrogen-14. By measuring the remaining carbon-14 in a sample, scientists can calculate how long it has been since the organism died. The process of carbon dating involves several steps. First, a sample is collected from the organic material to be dated, which can be anything from wood to bones to textiles. The sample is then prepared for analysis by removing any contaminants and converting it into a form suitable for measurement. Next, the sample is exposed to a high-energy radiation source, such as a particle accelerator or a nuclear reactor, which causes the carbon atoms in the sample to release small bursts of energy known as beta particles. These particles are detected and measured by sensitive instruments, allowing scientists to determine the amount of carbon-14 remaining in the sample. Finally, this information is used to calculate the age of the organic material. By comparing the ratio of carbon-14 to carbon-12 in the sample to the known ratio in the atmosphere, scientists can estimate the time elapsed since the organism died. Carbon dating is an invaluable tool for archaeologists, paleontologists, and geologists, as it allows them to accurately determine the ages of ancient artifacts, fossils, and geological formations. It has revolutionized our understanding of human history and the natural world, providing us with invaluable insights into the past.
Q:Where do I buy DNF premium advanced carbon?
And other activities, holidays, gift packs and so on, in the mall to buy, but now are colorless strengthening! Want to really want to use RMB to strengthen a little higher, directly to strengthen the volume!

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products