• Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields System 1
  • Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields System 2
  • Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields System 3
  • Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields System 4
  • Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields System 5
Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields

Nep Solar Inverter - Sun-5/6/8/10/12k-SG04LP3 Hybrid Inverter Low Voltage Battery Higher Yields

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
5000W
Inveter Efficiency:
97.00-97.60%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
7.6
Output Frequency:
50/60Hz
Battery Type:
Lead-acid or Li-lon
属性名(例如:Metal):
属性值(例如:Metal)
Max. Discharging Current (A):
120
属性名(例如:Metal):
属性值(例如:Metal)
Battery Voltage Range:
40~60V
Max. Charging Current (A):
120


Higher yields / Safe & Reliable / Smart / User-friendly

SUN 5/6/8/10/12K-SG is brand new three phase hybrid inverter with low battery voltage 48V, ensuring system safe and reliable. With compact design and high-power density, this series supports 1.3 DC/AC ratio, saving device investment. It supports three phase unbalanced output, extending the application scenarios. Equipped with CAN port (x2) BMS and parallel, x1 RS485 port for BMS, x1 RS232 port for remotely control, x1 DRM port, which makes the system smart and flexible.



100% unbalanced output, each phase; Max. output up to 50% rated power

DC couple and AC couple to retrofifit existing  solar system

Max. 16pcs parallel for on-grid and offff-grid  operation; Support multiple batteries parallel

Max. charging/discharging current of 240A

48V low voltage battery, transformer isolation  design

6 time periods for battery charging/discharging

Support storing energy from diesel generator

Technical Data
ModelSUN-5K
    -SG04LP3-EU
SUN-6K
    -SG04LP3-EU
SUN-8K
    -SG04LP3-EU
SUN-10K
    -SG04LP3-EU
SUN-12K
    -SG04LP3-EU
Battery Input Data
Battery TypeLead-acid   or Li-lon
Battery Voltage Range (V)

40~60

Max. Charging Current (A)120150190210240
Max. Discharging Current (A)120150190210240
External Temperature SensorYes
Charging Curve3   Stages / Equalization
Charging Strategy for Li-Ion BatterySelf-adaption   to BMS
PV String Input Data
Max. DC Input Power (W)65007800104001300015600
Rated PV Input Voltage (V)550   (160~800)
Start-up Voltage (V)160
MPPT Voltage Range (V)200-650
Full Load DC Voltage Range (V)350-650
PV Input Current (A)13+1326+13
Max. PV ISC (A)17+1734+17
Number of MPPT / Strings per MPPT2/1+12/2+1
AC Output Data
Rated AC Output and UPS Power (W)5000600080001000012000
Max. AC Output Power (W)5500660088001100013200
AC Output Rated Current (A)7.69.112.115.218.2
Max. AC Current (A)11.413.618.222.727.3
Max. Continuous AC Passthrough (A)45
Peak Power (off grid)2   time of rated power, 10 S
Power Factor0.8   leading to 0.8 lagging
Output Frequency and Voltage50/60Hz;   3L/N/PE 220/380, 230/400Vac
Grid TypeThree   Phase
DC injection current (mA)THD<3%   (Linear load<1.5%)< td="">
Efficiency
Max. Efficiency97.60%
Euro Efficiency97.00%
MPPT Efficiency99.90%

IntegratedPV   Input Lightning Protection, Anti-islanding Protection, PV String Input   Reverse Polarity Protection, Insulation Resistor Detection, Residual Current   Monitoring Unit, Output Over Current Protection, Output Shorted Protection,   Surge protection
Output Over Voltage ProtectionDC   Type II/AC Type III
Certifications and Standards
Grid RegulationCEI   0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99, G98,
    VDE 0126-1-1, RD 1699, C10-11
Safety EMC / StandardIEC/EN   61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
General Data
Operating Temperature Range (-45~60, >45   derating
CoolingSmrat cooling
Noise (dB) <45 dB 
Communication with BMSRS485; CAN 
 Weight (kg)33.6
Size (mm) 422W x 699.3H x279D
    IP65
Protection Degree IP65
Installation StyleWall-mounted
Warranty 5 years


Q: How does a solar inverter handle islanding detection?
A solar inverter handles islanding detection by constantly monitoring the electrical grid. If it detects that the grid has been disconnected, it initiates a process to disconnect itself from the grid to prevent an islanding event. This is typically done through the use of advanced algorithms and protective mechanisms to ensure the safety and stability of the electrical system.
Q: Can a solar inverter be used with dual MPPT inputs?
Yes, a solar inverter can be used with dual MPPT inputs. Dual MPPT (Maximum Power Point Tracking) inputs allow the inverter to optimize the power output from two separate solar arrays or strings, thereby increasing overall energy efficiency and system performance.
Q: What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used by the electrical grid. In doing so, the solar inverter ensures that the AC power being fed into the grid has a power factor close to unity, which means it is efficient and does not cause any unnecessary strain on the electrical system. This helps to improve the overall power quality and efficiency of the solar energy system.
Q: Three-phase photovoltaic inverter grid, the use of phase-locked loop is what?
Grid-connected inverter can be operated locally through the LCD screen, or through remote monitoring with dedicated monitoring software.
Q: Are solar inverters compatible with battery storage systems?
Yes, solar inverters are compatible with battery storage systems. In fact, solar inverters play a crucial role in integrating battery storage with solar power systems. Solar inverters convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power our homes and businesses. Battery storage systems, on the other hand, store excess solar energy for later use, allowing us to use solar power even when the sun is not shining. When combined with solar inverters, battery storage systems can be charged using the excess energy generated by the solar panels during the day, and then discharge that stored energy during the night or during periods of high energy demand. To facilitate compatibility, solar inverters used in battery storage systems are equipped with additional features and functionalities. For example, they may have built-in charge controllers that regulate the charging and discharging of the batteries, ensuring their optimal performance and longevity. Additionally, advanced inverters may also include smart grid capabilities, allowing them to communicate with the utility grid and optimize energy flows based on grid conditions and electricity prices. Overall, solar inverters are essential components in ensuring the seamless integration of battery storage systems with solar power, enabling us to maximize the benefits of clean and sustainable energy.
Q: Can a solar inverter be used with solar-powered electric vehicle charging stations?
Yes, a solar inverter can be used with solar-powered electric vehicle charging stations. A solar inverter is necessary to convert the DC (direct current) power generated by solar panels into AC (alternating current) power that can be used by electric vehicle charging stations. This allows the solar power to be fed into the charging station and used to charge electric vehicles.
Q: How long do solar inverters typically last?
Solar inverters typically have a lifespan of around 10 to 15 years. However, the actual longevity can vary depending on factors such as the quality of the inverter, maintenance, and environmental conditions.
Q: How does MPPT improve the efficiency of a solar inverter?
MPPT (Maximum Power Point Tracking) improves the efficiency of a solar inverter by continuously adjusting the operating point of the solar panels to ensure they are producing maximum power. This is achieved by maximizing the voltage and current output of the panels, which allows the inverter to convert more of the available solar energy into usable electricity. By constantly tracking the maximum power point, MPPT ensures that the solar inverter operates at its highest efficiency, resulting in increased overall system efficiency and improved energy generation.
Q: Can a solar inverter be used with solar-powered data centers?
Yes, a solar inverter can be used with solar-powered data centers. A solar inverter converts the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical equipment, including data centers. By connecting the solar panels to a solar inverter, the generated solar energy can be effectively utilized to power data centers, making them more sustainable and reducing reliance on traditional power sources.
Q: Can a solar inverter be used with solar-powered ventilation systems?
Yes, a solar inverter can be used with solar-powered ventilation systems. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various devices and systems, including ventilation systems. By connecting the solar panels to the solar inverter, the AC energy produced can be used to operate the ventilation system, making it an efficient and eco-friendly solution.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords