• Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 1
  • Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 2
  • Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 3
  • Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 4
Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost

Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

High-yield

·Max98.2% efficiency

·Realtime precise MPPT algorithm for max harvest

·Wideinput voltage operation range from 250V to 960V

Allin one. Flexible and economical system solution

·DCswitch(option)

·DCsurge protection device(option)

·ACsurge protection device(option)

·Built-inPV Combiner(option)

·Powermanagement unit

·Optimumselection for big PV plants, commercial buildings...

Lowmaintenance cost

·Detachablecover for easy installation

·Rust-freealuminum covers

·Flexiblemonitoring solution

·Multifunction relay can be configured to show various inverter information

Intelligentgrid management

·LVRTsupport

·Reactivepower adjustable

·Selfpower reducer whenover frequency

·Remoteactive/reactive power limit control



Technical  Data

SOFAR 10000TL

SOFAR 15000TL

SOFAR 17000TL

SOFAR 20000TL

Input  (DC)

Max.  Input Power

10400W

15600W

17700W

20800W

Max. DC  power for single MPPT

6750(450V-850V)

10500(500V-850V)

10500(500V-850V)

12000(500V-850V)

Number of  independent MPPT

2

Number  of DC inputs

2 for each  MPPT

3 for  each MPPT

Max.  Input Voltage

1000V

Start-up  input voltage

350V(+/-1V)

Rated  input voltage

600V

Operating  input voltage range

250V-960V

MPPT  voltage range

350V-850V

370V-850V

420V-850V

430V-850V

Max.  Input current per MPPT

15A/15A

21A/21A

21A/21A

24A/24A

Input  short circuit current per MPPT

20A

27A

27A

30A

Output(AC)

Rated  power(@230V,50Hz)

10000VA

15000VA

17000VA

20000VA

Max. AC  power

10000VA

15000VA

17000VA

20000VA

Nominal  AC voltage

3/N/PE,  220/380

3/N/PE,  230/400

3/N/03,  240/415

Nominal  AC voltage range

184V-276V

Grid  frequency range

50Hz,  +/-5Hz

Active  power adjustable range

0~100%

Max.  Output Current

15A

22A

25A

29A

THDi

<3%

Power  Factor

1(Adjustable  +/-0.8)

Performance

Max  efficiency

98.2%

Weighted  eff.(EU/CEC)

97.6%/97.8%

97.9%/98%

97.9%/98%

98%/98.1%

Self-consumption  at night

<1W

Feed-in  start power

45W

MPPT  efficiency

>99.5%

Protection

DC  reverse polarity protection

Yes

DC  switch

Optional

Protection  class/overvoltage category

I/III

Input/output  SPD(II)

Optional

Safety  Protection

Anti-islanding,  RCMU, Ground fault monitoring

Certification

CE, CGC,  AS4777, AS3100, VDE 4105, C10-C11, G59(more available on request)

Communication

Power  management unit

According  to certification and request

Standard  Communication Mode

RS485,  Wifi(optional), Multi-function relay

Operation  Data Storage

25 years

General  data

Ambient  temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree  of protection

IP65

Allowable  relative humidity range

0 ~ 95%  no condensing

Max.  Operating Altitude

2000m

Noise

<45dB

Weight

45kg

45kg

48kg

48kg

Cooling

Nature

Fan

Fan

Fan

Dimension

707×492×240mm

Warranty

5 years


 

 

Certification

CNBM Solar strictly carries out the ISO 9001 quality control methodology and has implemented check points at every step of the production process to ensure our product performance durability and safety. The stringent quality control process has been confirmed by numerous independent agencies and LDK Solar modules earned IEC, TUV and UL certifications.

·         IEC:IEC 61215, IEC 61730 (1&2), conformity to CE

·         UL 1703 2002/03/15 Ed:3 Rev:2004/06/30

·         ULC/ORD-C1703-01 Second Edition 2001/01/01

·         UL and Canadian Standard for Safety Flat-Plate

·         ISO 9001: 2008 Quality Management Systems

·         CEC Listed: Modules are eligible for California Rebates

·         PV Cycle: Voluntary module take back and recycling program

·         MCS Certificate

 

Warranty

provides a 13 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later. This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to us. This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

 

FAQ

  1. How fast will my system respond to a power outage?

Our solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

  1. What kind of batteries do the systems include?

Our solar backup electric systems use special high-quality electric storage batteries.

  1. How do I install my system?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

Q: Can a solar inverter be used with batteries?
Yes, a solar inverter can be used with batteries. In fact, using a solar inverter with batteries is a common practice in solar energy systems. The inverter helps convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power various appliances and devices. When batteries are connected to the system, the excess electricity generated by the solar panels can be stored in the batteries for later use, allowing for continuous power supply even when the sun is not shining.
Q: How does a solar inverter protect against power surges?
A solar inverter protects against power surges by using built-in surge protection devices such as metal oxide varistors (MOVs) or transient voltage suppressors (TVS). These devices act as a barrier, diverting excess voltage from entering the inverter and the connected solar panels. This prevents damage to the inverter and other sensitive electronic components by ensuring that the voltage stays within safe limits.
Q: What are the advantages of using a three-phase solar inverter?
There are several advantages to using a three-phase solar inverter. Firstly, three-phase solar inverters allow for higher power output compared to single-phase inverters. This is because they distribute the power across three phases, resulting in increased efficiency and capacity. Additionally, three-phase inverters provide better voltage stability and balance across the three phases of a power grid. This is particularly beneficial in commercial or industrial settings where there may be heavy loads and varying power demands. Furthermore, three-phase solar inverters offer improved reliability and durability. They are designed to handle higher currents and can withstand higher temperatures, ensuring a longer lifespan and reducing maintenance requirements. Lastly, three-phase inverters are more cost-effective in large-scale solar installations. They allow for better utilization of available grid infrastructure, reducing transmission losses and optimizing power distribution. Overall, the advantages of using a three-phase solar inverter include higher power output, improved voltage stability, enhanced reliability, and cost-effectiveness in larger-scale installations.
Q: What is the purpose of a solar inverter?
The purpose of a solar inverter is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed back into the electrical grid.
Q: What is the maximum AC voltage that a solar inverter can provide?
The maximum AC voltage that a solar inverter can provide typically depends on the specific model and its specifications. However, in general, most solar inverters are designed to produce a maximum AC voltage of around 240 volts in residential installations and up to 480 volts in commercial or utility-scale installations.
Q: Can a solar inverter be used in three-phase systems?
Yes, a solar inverter can be used in three-phase systems. In fact, three-phase solar inverters are commonly used in commercial and industrial applications where a three-phase power supply is available. These inverters are designed to convert the DC power generated by solar panels into AC power suitable for use in three-phase systems.
Q: What is the difference between a centralized and decentralized solar inverter system?
A centralized solar inverter system refers to a setup where multiple solar panels are connected to a single inverter. In this system, all the panels are connected in series, and the combined DC (direct current) power generated by the panels is converted into AC (alternating current) power by the centralized inverter. On the other hand, a decentralized solar inverter system, also known as microinverters or power optimizers, involves each solar panel having its own dedicated inverter. In this system, each panel operates independently, converting its DC power into AC power directly at the panel level. The main difference between the two systems lies in their architecture and the way power conversion occurs. In a centralized system, the entire array's power output is dependent on the performance of a single inverter. If any one panel in the array underperforms due to shading or malfunction, it can significantly impact the overall system's performance. Additionally, the use of a single inverter can create limitations in terms of design flexibility and system scalability. In a decentralized system, each panel operates independently, allowing for greater flexibility and optimization. The individual inverters in a decentralized system can maximize the power output of each panel, regardless of shading or performance variations. This also means that the overall system performance is less impacted by the underperformance of a single panel. Moreover, decentralized systems offer greater scalability as additional panels can be easily added without the need for significant system redesign. Decentralized systems also provide enhanced monitoring capabilities, as each inverter can provide real-time data on individual panel performance. This allows for easier troubleshooting, maintenance, and identification of any issues within the solar array. In summary, while a centralized solar inverter system is a simpler and more cost-effective option, a decentralized system offers better optimization, scalability, monitoring, and performance reliability. The choice between the two systems depends on factors such as system size, shading conditions, budget, and desired level of control and flexibility.
Q: What are the safety features of a solar inverter?
The safety features of a solar inverter typically include surge protection, overvoltage protection, short circuit protection, ground fault detection, and overtemperature protection. These features help to prevent damage to the inverter and the electrical system, ensuring safe and reliable operation.
Q: Can a solar inverter be used in regions with high temperature extremes?
Yes, solar inverters can be used in regions with high temperature extremes. However, it is important to choose inverters that are specifically designed to handle such conditions, as excessive heat can affect their performance and lifespan. These inverters should have features like advanced thermal management systems, wide temperature operating ranges, and robust cooling mechanisms to ensure optimal functioning and durability even in extreme temperatures.
Q: What is the maximum power capacity of a solar inverter?
The maximum power capacity of a solar inverter can vary depending on the specific model and brand. However, in general, solar inverters can have power capacities ranging from a few hundred watts to several kilowatts, with some larger industrial-grade inverters capable of handling even higher power capacities.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords