• Hot Rolled Reinforcing Steel Bar System 1
  • Hot Rolled Reinforcing Steel Bar System 2
  • Hot Rolled Reinforcing Steel Bar System 3
Hot Rolled Reinforcing Steel Bar

Hot Rolled Reinforcing Steel Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

OKorder is offering Hot Rolled Reinforcing Steel Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Reinforcing Steel Bar  are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Reinforcing Steel Bar are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335

Size:8,10, 12, 14, 16, 18, 20, 22, 25, 28, 32mm

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

≥400

≥570

≥14

 

FAQ:

Q1: How soon can we receive the product after purchase?

A1: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

Q2: How many tons of steel products could be loaded in containers?

A2: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

Q3: what is the difference between actual weight and theoretical weight?

A3: All the section steel has two weights: actual weight and theoretical weight. Actual weight is the weighing out when the product delivered from the mill. Theoretical weight is calculated by pieces.  The invoice can be based on each of them as your request.

.

 

Images:

 

Q:What are the different types of steel rebars used in industrial constructions?
There are several different types of steel rebars that are commonly used in industrial constructions. These rebars are essential for reinforcing concrete structures and providing strength and durability to the overall construction. Some of the main types of steel rebars used in industrial constructions include: 1. Mild Steel Rebars: Also known as black steel rebars, these are the most commonly used type of rebars in construction. They are made from carbon steel and have a smooth surface. Mild steel rebars provide adequate strength and are cost-effective, making them suitable for a wide range of industrial applications. 2. High-strength Deformed Steel Rebars (HSD): These rebars have ribs or deformations on their surface to provide better bonding with concrete. HSD rebars are made from carbon steel and undergo a process called thermomechanical treatment to increase their strength. These rebars are commonly used in heavy-duty industrial constructions where higher strength is required. 3. Epoxy-coated Rebars: These rebars are coated with an epoxy resin to protect them from corrosion. Epoxy-coated rebars are commonly used in areas where the concrete is exposed to moisture or chemicals, such as bridges and marine structures. The epoxy coating acts as a barrier, preventing corrosion and extending the lifespan of the structure. 4. Galvanized Rebars: Galvanized rebars are coated with a layer of zinc to provide corrosion resistance. The zinc coating acts as a sacrificial layer, protecting the steel rebars from rusting. These rebars are commonly used in areas where the concrete is exposed to harsh environmental conditions or in coastal regions where the risk of corrosion is high. 5. Stainless Steel Rebars: Stainless steel rebars are highly corrosion-resistant and are used in environments that require exceptional durability and resistance to corrosion. They are commonly used in industrial constructions that are exposed to aggressive chemicals, high humidity, or extreme temperatures. Each type of steel rebar has its own set of advantages and is suitable for different applications based on the specific requirements of the industrial construction project. It is important to carefully consider factors such as strength, corrosion resistance, and cost when selecting the appropriate type of steel rebar for a particular construction project.
Q:How do steel rebars contribute to the strength of concrete?
The strength of concrete is enhanced in various ways by steel rebars. Firstly, they increase the tensile strength of concrete, which is otherwise relatively low. Although concrete is excellent at withstanding compression, it is weak when it comes to resisting tension. This is where steel rebars come into play. By embedding them within the concrete, they provide extra strength and help prevent cracks from forming and spreading. Secondly, the bond between concrete and the reinforcement material is improved by steel rebars. The ribbed surface of the rebars creates a better grip with the concrete, ensuring a stronger bond. This bond is crucial as it allows the concrete and steel to work together, distributing the loads and minimizing the risk of structural failure. Furthermore, the overall durability and longevity of concrete structures are increased by steel rebars. They are resistant to corrosion, which is a major concern in coastal or high humidity areas. The corrosion resistance of rebars ensures that the concrete remains structurally sound for a longer period, reducing maintenance costs and extending the lifespan of the structure. In addition to their strength-enhancing abilities, steel rebars also contribute to the structural stability of concrete elements. They help reinforce critical areas such as beams, columns, and foundations, where high loads and forces are present. By providing additional support and reinforcement, steel rebars help prevent excessive deflection, bending, or failure of these elements under heavy loads. To summarize, steel rebars are crucial in enhancing the strength of concrete structures by improving tensile strength, bond strength, durability, and overall structural stability. Incorporating them into concrete elements is essential to ensure the longevity and safety of various construction projects.
Q:How do steel rebars prevent concrete from cracking?
Steel rebars prevent concrete from cracking by providing reinforcement and increasing its strength. When concrete is poured, it is initially in a liquid state and lacks tensile strength, meaning it is prone to cracking under tension. However, steel rebars are embedded within the concrete structure, forming a strong bond with the concrete as it hardens. The rebars act as a framework within the concrete, distributing the tensile forces evenly throughout the structure. When external forces, such as load or temperature changes, act on the concrete, the rebars resist the tensile stresses that would otherwise cause cracks to form. This is because steel has a much higher tensile strength compared to concrete. Moreover, steel rebars also help to control cracks that may occur due to shrinkage during the curing process of concrete. As the concrete dries and hardens, it undergoes a chemical reaction that causes it to shrink. This shrinkage can lead to cracks, but the presence of rebars restrains the concrete from expanding or contracting excessively, reducing the likelihood of cracking. In addition to preventing cracks, steel rebars also enhance the overall structural integrity of the concrete. They help to distribute the load evenly, making the concrete structure more resistant to bending, shearing, and other forces. This reinforcement ensures that the concrete can withstand the anticipated loads and maintain its stability over time. Overall, steel rebars play a crucial role in preventing concrete from cracking by providing tensile strength and reinforcement. By distributing tensile forces, controlling shrinkage, and enhancing structural integrity, they ensure that the concrete remains strong, durable, and resistant to cracking, thereby prolonging its lifespan and ensuring its stability.
Q:Can steel rebars be used in the construction of tunnels for transportation?
Yes, steel rebars can be used in the construction of tunnels for transportation. Steel rebars provide strength and reinforcement to the concrete used in tunnel construction, ensuring the structural integrity and durability of the tunnels. They help withstand the heavy loads and pressures that tunnels may experience, making them suitable for transportation tunnels where safety and longevity are crucial.
Q:How do steel rebars provide flexibility to concrete structures?
Concrete structures can benefit from the flexibility provided by steel rebars in multiple ways. Firstly, the addition of steel rebars reinforces the concrete, enhancing its tensile strength. While concrete is strong in compression, it is weak in tension. By incorporating steel rebars, the concrete becomes more resistant to bending and cracking, as the rebars can absorb the tensile forces that would otherwise cause failure. This reinforcement enables concrete structures to withstand heavier loads and offers flexibility by preventing excessive deformation or collapse. Secondly, steel rebars can be utilized to construct a reinforced concrete frame, which boosts the overall flexibility of the structure. When embedded in the concrete, the rebars form an interconnected network of elements that distribute applied loads more evenly. This network acts as a flexible skeleton capable of adapting to various stresses, such as temperature changes, ground movements, or dynamic forces. As a result, the structure can accommodate minor movements or vibrations without sustaining significant damage. Additionally, steel rebars can be strategically positioned in areas where additional flexibility is required. For instance, in regions prone to seismic activity, rebars can be concentrated in critical areas like building joints or corners. This placement helps dissipate the energy generated during an earthquake, allowing the structure to deform and absorb seismic forces without collapsing. The flexibility provided by steel rebars enhances the seismic resistance of the concrete structure. To summarize, steel rebars contribute to the flexibility of concrete structures by increasing their tensile strength, creating a reinforced concrete frame, and allowing for strategic placement to enhance specific areas of flexibility. This flexibility enables concrete structures to withstand diverse loads, adapt to various stresses, and improve their overall strength and durability.
Q:What are the guidelines for repairing or replacing corroded steel rebars in existing structures?
The guidelines for repairing or replacing corroded steel rebars in existing structures vary depending on the severity of the corrosion and the specific requirements of the project. However, there are some general guidelines that can be followed: 1. Assessment: Before proceeding with any repairs or replacements, a thorough assessment of the corrosion damage should be conducted. This may involve visual inspections, non-destructive testing, or even laboratory analysis of samples taken from the rebars. 2. Safety: Safety should always be the top priority when working with corroded rebars. Adequate precautions should be taken to ensure the safety of workers and surrounding areas. This may include the use of personal protective equipment and ensuring a stable work environment. 3. Determine the extent of corrosion: It is important to determine the extent of corrosion and whether it has affected the structural integrity of the rebars. This can help in deciding whether repair or replacement is necessary. 4. Repair methods: Depending on the severity of corrosion, various repair methods can be employed. These may include removing the corroded portion of the rebar and applying a corrosion inhibitor or protective coating, or using electrochemical techniques such as cathodic protection to prevent further corrosion. 5. Replacement: If the corrosion damage is extensive and repair is not feasible, the corroded rebars may need to be replaced. The replacement rebars should be of the same or higher grade and should be properly anchored to maintain the structural integrity of the existing structure. 6. Design considerations: When repairing or replacing corroded rebars, it is important to consider the design requirements of the structure. The repaired or replaced rebars should meet the necessary load-bearing capacity and should be properly integrated into the existing structure. 7. Quality control: Throughout the repair or replacement process, rigorous quality control measures should be implemented to ensure the effectiveness and durability of the repairs. This may include regular inspections, testing, and monitoring of the repaired or replaced rebars. It is important to note that these guidelines are general recommendations and should be tailored to the specific circumstances and requirements of each project. Therefore, it is advisable to consult with a structural engineer or a professional experienced in repairing corroded steel rebars for a more accurate and detailed guideline.
Q:Can steel rebars be used in high-strength concrete?
Yes, steel rebars can be used in high-strength concrete. In fact, they are commonly used as reinforcement in high-strength concrete structures to enhance the overall strength and durability of the concrete.
Q:What specifications should be used for the three - step steel electroslag pressure welding electrode?
Steel is known as hot rolled ribbed bar. Ordinary hot rolled steel bars are made up of HRB and the minimum yield point of the brand. H, R, and B are the first letters in English for hot-rolled (Hotrolled), ribbed (Ribbed) and reinforced (Bars) three words. Hot rolled ribbed bar is divided into two levels, HRB335 (old No. 20MnSi), three HRB400 (20MnSiV, 20MnSiNb, old No. 20Mnti), four grade HRB500 three grade.
Q:Can steel rebars be used in cold weather concreting?
Yes, steel rebars can be used in cold weather concreting. However, it is important to take necessary precautions and follow guidelines to ensure the rebars remain free from corrosion in low temperatures. Additionally, using proper construction techniques and allowing sufficient time for curing can help prevent any negative effects on the concrete due to cold weather conditions.
Q:What are the factors to consider while designing with steel rebars?
There are several factors to consider while designing with steel rebars. 1. Strength and durability: The rebars should be selected based on the required strength and durability to withstand the anticipated loads and environmental conditions. 2. Size and shape: The size and shape of the rebars should be chosen to ensure proper placement, spacing, and anchorage within the concrete structure. 3. Corrosion resistance: The rebars should have adequate corrosion resistance, especially in environments where they may be exposed to moisture or chemicals. This can be achieved through proper material selection or by applying protective coatings. 4. Bond strength: The bond between the rebars and the concrete is crucial for transferring loads. The design should consider the factors that influence bond strength, such as surface roughness, bar diameter, and the use of proper concrete cover. 5. Construction constraints: The design should take into account any construction constraints, such as limitations in handling and placing the rebars, and ensure that the design is feasible and practical to implement. 6. Code compliance: Designing with steel rebars should adhere to relevant building codes and standards to ensure structural safety and regulatory compliance. By considering these factors, designers can create robust and reliable structures that effectively utilize the strength and versatility of steel rebars.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords