• DUCTILE  IRON PIPES  AND PIPE FITTINGS K8 CLASS DN1700 System 1
  • DUCTILE  IRON PIPES  AND PIPE FITTINGS K8 CLASS DN1700 System 2
DUCTILE  IRON PIPES  AND PIPE FITTINGS K8 CLASS DN1700

DUCTILE IRON PIPES AND PIPE FITTINGS K8 CLASS DN1700

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
22 pc
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing
  • Material : Ductile Cast Iron

  • Size Range : DN 80mm to DN 2000mm

  • Unit Effective Length : 6m or 5.7m

  • Manufacture Standard: ISO 2531:1998/ EN 545:2006/EN 598:2007

  • Annual capacity : 200,000 tons

  • Coating Exterior: Zinc 130g/m2 according to ISO 8179-1 and bitumen coating 70 microns.

  • Cement Interior: Portland Cement/ High Alumina Cement/ Sulphate Resisting Cement Lining according to ISO 4179

  • Special requirements on external coating and internal lining can be applied

  • We also provide accessories such as SBR/EPDM rubber gaskets, lubricant paste, pipe caps, PE sleeves, etc.

Additional Parts:

  • Each pipe is strictly inspected according to related standard to ensure permanently high performance.

  • Easy Installation at site and service free for life

  • Long Service Lifespan

  • Quotation will arrive you within 24hours once we get your inquiry.

  • We guarantee offering you a competitive price.

  • A copy of original inspection reports of pipes will be offered after shipment.

  • Photos of loading process will be sent to the customer after shipment effect.

  • We will follow-up the delivery progress after shipment effect and update to the customer on weekly basis.

 

Q:How do ductile iron pipes perform in high-traffic areas?
Ductile iron pipes perform well in high-traffic areas due to their durability and strength. They have the ability to withstand heavy loads and traffic loads without experiencing deformation or damage. Additionally, their corrosion resistance properties make them suitable for prolonged exposure to moisture and harsh environmental conditions. Overall, ductile iron pipes are a reliable choice for high-traffic areas.
Q:Are ductile iron pipes suitable for underground parking structures?
Underground parking structures can benefit from the use of ductile iron pipes. These pipes are recognized for their robustness and long-lasting nature, making them an optimal option for underground settings where they may encounter substantial loads or potential impacts. Moreover, ductile iron pipes exhibit exceptional resistance to corrosion, a crucial characteristic in underground environments that are prone to moisture and other corrosive elements. Furthermore, the high tensile strength and flexibility of ductile iron pipes enable them to withstand ground movements and settle without any cracking or breaking, further elevating their suitability for underground parking structures. In sum, ductile iron pipes offer a dependable and enduring solution for fulfilling the drainage and water supply requirements of underground parking facilities.
Q:Ductile iron pipes lined with cement mortar in the water (living water, water in the 6.9-7.3) in the early pH, why pH increased? How to solve this problem?
1, because of the bone in mortar, such as silicate products, there will be silicification reaction, in addition, there is the reaction of limestone in lime.2, cement mortar lining cover coating, that is, spray some paint! Some questions four are unavoidable
Q:How is ductile iron different from cast iron?
Ductile iron and cast iron are two iron alloys with varying compositions, properties, and uses. The primary distinction between the two lies in their microstructure and mechanical properties. Ductile iron, also known as spheroidal graphite iron or nodular cast iron, is a type of cast iron that undergoes an extra treatment process to enhance its strength and ductility. This is achieved by adding small amounts of magnesium to the molten iron during casting, resulting in the formation of graphite nodules throughout the material. These nodules act as stress raisers, preventing crack propagation and making ductile iron more resistant to fractures and more flexible compared to cast iron. In contrast, cast iron is an iron alloy with a higher carbon content than ductile iron. This higher carbon content leads to the formation of graphite flakes within the material, giving cast iron its characteristic brittleness. Due to its brittleness, cast iron is more prone to cracking and less flexible than ductile iron. However, cast iron exhibits excellent compressive strength and is highly resistant to wear and abrasion, making it suitable for applications where strength and durability are crucial, such as engine blocks, pipes, and manhole covers. Another difference between ductile iron and cast iron can be observed in their machinability. Ductile iron is generally easier to machine due to its lower carbon content and the presence of graphite nodules, which act as lubricants during the cutting process. On the other hand, the presence of graphite flakes in cast iron can cause tool wear and result in a poor surface finish during machining. In summary, ductile iron and cast iron differ in their microstructure, mechanical properties, and applications. Ductile iron offers improved ductility and fracture resistance, making it suitable for applications that require flexibility and impact resistance. Cast iron, with its higher carbon content and graphite flakes, provides excellent compressive strength and wear resistance, making it ideal for applications that demand strength and durability.
Q:Are ductile iron pipes more resistant to breaks and cracks than other pipe materials?
Yes, ductile iron pipes are generally more resistant to breaks and cracks compared to other pipe materials. Ductile iron is a type of cast iron that has been treated with magnesium to make it more flexible and less brittle. This enhanced flexibility allows ductile iron pipes to withstand high levels of pressure and external loads without breaking or cracking. Compared to other common pipe materials like PVC, HDPE, or steel, ductile iron pipes have superior strength and durability. They have a higher tensile strength, which means they can withstand greater forces and pressures without failing. Additionally, ductile iron pipes have a higher impact resistance, making them less prone to cracking or breaking under sudden impact or external loads. Another advantage of ductile iron pipes is their resistance to corrosion. The material is naturally resistant to rust and can withstand harsh environmental conditions, making it suitable for underground installations or areas with corrosive soils. This corrosion resistance further contributes to the longevity and overall integrity of the pipes. Furthermore, ductile iron pipes have a longer lifespan compared to other pipe materials. They are designed to last for several decades, often exceeding 50 years, with minimal maintenance. This extended lifespan reduces the need for frequent replacements, saving both time and money in the long run. However, it is important to note that no material is completely immune to damage or failure. Proper installation, maintenance, and adherence to industry standards and guidelines are essential to ensure the optimal performance and longevity of ductile iron pipes. Regular inspection and monitoring should also be conducted to identify any potential issues or signs of deterioration, allowing for timely repairs or replacements.
Q:Are ductile iron pipes suitable for power plant applications?
Yes, ductile iron pipes are suitable for power plant applications. Ductile iron is a type of cast iron that has enhanced strength, durability, and flexibility compared to traditional cast iron pipes. These properties make ductile iron pipes ideal for power plant applications where they are exposed to high pressure, extreme temperatures, and corrosive environments. Power plants often require a reliable and robust piping system to transport various fluids such as water, steam, and chemicals. Ductile iron pipes have high tensile strength and can withstand high pressure, ensuring the safe and efficient flow of these fluids within a power plant. Their ability to handle high-pressure steam makes them particularly suitable for power generation applications. Additionally, ductile iron pipes have excellent resistance to corrosion, which is crucial in power plants where many fluids can be highly corrosive. The internal and external linings of these pipes protect them from corrosion, ensuring a longer service life and reducing maintenance costs. This corrosion resistance also makes them suitable for transporting chemicals and wastewater within a power plant. Another benefit of ductile iron pipes is their ability to withstand extreme temperatures. Power plants often operate at high temperatures, and ductile iron pipes can handle these conditions without compromising their structural integrity. They have a high melting point and can resist thermal expansion and contraction, making them suitable for applications involving hot fluids and steam. Furthermore, ductile iron pipes are cost-effective compared to other materials commonly used in power plants, such as stainless steel or carbon steel. They offer a balance between performance and cost, making them an attractive choice for power plant applications. In conclusion, ductile iron pipes are well-suited for power plant applications due to their strength, durability, flexibility, corrosion resistance, and ability to withstand high pressures and extreme temperatures. Their cost-effectiveness further adds to their suitability for power plant piping systems.
Q:What is the expected burst pressure of ductile iron pipes?
The expected burst pressure of ductile iron pipes can vary depending on several factors such as the pipe's diameter, wall thickness, and the specific grade of ductile iron used. However, ductile iron pipes are typically designed and manufactured to withstand high pressure loads. On average, ductile iron pipes have an expected burst pressure ranging from 350 psi (pounds per square inch) to 700 psi. However, it is important to note that this is a general range, and the actual burst pressure can be higher or lower depending on the specific design and manufacturing standards followed. To determine the exact expected burst pressure for a particular ductile iron pipe, it is recommended to consult the manufacturer's specifications or relevant industry standards such as the American Water Works Association (AWWA) C150 or ISO 2531, which provide guidelines for ductile iron pipes and their performance under various conditions. Additionally, local building codes and regulations may also provide specific requirements for ductile iron pipe installations.
Q:Are ductile iron pipes suitable for sewage treatment plants?
Yes, ductile iron pipes are suitable for sewage treatment plants. Ductile iron pipes are known for their durability, strength, and corrosion resistance, making them ideal for handling the corrosive and abrasive nature of sewage. They can withstand high pressure and are capable of accommodating heavy loads and ground movements, making them a reliable choice for sewage treatment facilities. Additionally, their smooth interior surface minimizes friction, reducing the risk of clogs and improving the flow of wastewater.
Q:What are some common applications for ductile iron pipe?
Ductile iron pipe, also known as DI pipe, is widely used in various applications due to its durability, strength, and corrosion resistance. Here are some common applications for ductile iron pipe: 1. Water Distribution: Ductile iron pipe is extensively used for the distribution of potable water. Its high tensile strength allows it to withstand high water pressure, making it ideal for water mains, water transmission lines, and water distribution networks. 2. Sewer Systems: Ductile iron pipe is commonly used in sewer systems due to its resistance to corrosion and its ability to handle high loads. It is often used for gravity sewer lines, force mains, and stormwater systems. 3. Industrial Applications: Ductile iron pipe finds applications in various industrial settings, including power plants, chemical plants, and refineries. It is used for the transportation of water, wastewater, and other fluids in these industries. 4. Irrigation Systems: Due to its strength and long lifespan, ductile iron pipe is suitable for irrigation systems, especially in agricultural areas. It is used to transport water for irrigation purposes, ensuring efficient water distribution in fields and farms. 5. Fire Protection Systems: Ductile iron pipe is commonly used for fire protection systems, including fire hydrants, fire sprinkler systems, and fire suppression systems. Its robustness and resistance to high pressure make it an excellent choice for reliable and effective fire protection. 6. Pumping Stations: Ductile iron pipe is often used in pumping stations, which are crucial for various water-related applications. It is employed in water intake systems, wastewater pumping stations, and water treatment plants to transport water and wastewater efficiently. 7. Municipal Infrastructure: Ductile iron pipe is widely used in municipal infrastructure projects, including road drainage systems, culverts, and bridge crossings. Its strength, durability, and resistance to external loads make it suitable for these applications. 8. Gas Distribution: Although more commonly used for water-related applications, ductile iron pipe is also used for the distribution of natural gas and other gases. It is preferred for gas distribution due to its resistance to corrosion and its ability to withstand high-pressure environments. Overall, ductile iron pipe has a wide range of applications and is preferred in situations that require strength, durability, and resistance to corrosion. Its versatility and reliability make it a popular choice for various infrastructure projects and industrial applications.
Q:Ductile iron 600-3 grade, tensile strength, how to test, there is a simple way?
General use of tensile machines, such as quality management, this aspect should be strictly controlled, otherwise the data is not accurate, do nothing, no one wants

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords