• Carbon Electrodes with Diameter  Φ500 to Φ700 System 1
  • Carbon Electrodes with Diameter  Φ500 to Φ700 System 2
  • Carbon Electrodes with Diameter  Φ500 to Φ700 System 3
  • Carbon Electrodes with Diameter  Φ500 to Φ700 System 4
Carbon Electrodes with Diameter  Φ500 to Φ700

Carbon Electrodes with Diameter Φ500 to Φ700

Ref Price:
get latest price
Loading Port:
Lianyungang
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
700 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Spcifications

1:carbon eletrode 
2:for ferroalloy,calcium carbide, silicon metal,  manufacture

Product Description


Carbon Electrode is abaked electrode used in submerged arc furnaces for delivering power to the charge mix. Electrode  is added to the top of the electrode column cylindrical  form.  Electrode  is essentially a mix of Electrically Calcined Anthracite (ECA) or Calcined Petroleum Coke (CPC) with Coal Tar Pitch and is baked for weeks, it is widly used for ferroally productiong, silicon metal production etc. 


Graphite/Carbon Electrode Paste Specification:


PARAMETER   UNIT GUARANTEE VALUE
ItemsΦ500~Φ700Φ750Φ960Φ1020Φ1400
Rs      μΩ.m≤45≤38≤45≤38
≤40
Bulk Desity g/cm3≥1.55≥1.58≥1.55≥1.58≥1.55≥1.58
Bending Strength
MPa 
3.57.54.07.53.57.54.07.53.57.54.07.5
Compressive Strength       MPa≥20.0≥20.0≥20.0≥20.0≥19.0≥19.0
Compressive Strength       MPa3.24.83.04.63.24.83.04.63.24.83.04.6
Ash    %≤2.5≤2.0≤2.5≤2.0≤2.5≤2.0


Picture:

Carbon Electrodes with Diameter  Φ500 to Φ700

Carbon Electrodes with Diameter  Φ500 to Φ700

Carbon Electrodes with Diameter  Φ500 to Φ700

Carbon Electrodes with Diameter  Φ500 to Φ700



We can adjust the size based on different enquiry. please contact us if you are interested in this materials, we will send our offer as soon as get your kind email.



Do you know how many kinds of our graphite electrode?

 

1, according to the power, we have regular power, high power, super high power, super high power 

and American Ucar standard.

 

2, according to the shape, we have round shape and square shape.

 

3, according to the size, the diameter is from 250mm to 700mm.

 


Q:How does carbon affect the formation of tsunamis?
The formation of tsunamis is not directly influenced by carbon. Tsunamis primarily occur as a result of underwater earthquakes, volcanic eruptions, or landslides. Carbon, in the form of carbon dioxide (CO2), is a greenhouse gas that contributes to global warming and climate change. Although carbon emissions and the resulting climate change can affect ocean temperatures and sea levels, they do not directly cause tsunamis. However, it is important to consider that climate change can indirectly impact the intensity and frequency of natural disasters, including tsunamis, by affecting oceanic and atmospheric conditions. The rising sea levels caused by melting glaciers and polar ice can potentially increase the destructive power of tsunamis by enabling them to reach further inland. Moreover, climate change can influence the occurrence and strength of earthquakes and volcanic activity, which are the main triggers of tsunamis. Therefore, even though carbon emissions do not directly influence the formation of tsunamis, their impact on climate change can indirectly affect the factors that contribute to the development and severity of tsunamis.
Q:What kind of industry does high-performance carbon fiber belong to?
High performance carbon fiber is used in many industries, such as automobiles, bicycles, and even the aviation industry.. If you look at the industry type, many industries have high-performance carbon fiber figure, if divided by the industry attributes, should belong to the emerging industry, the future potential of the industry
Q:How many points can Yongan change for 1 carbon coins?
Every Thursday at 19:00, carbon points change for carbon coins, 19:30 carbon coins exchange gifts
Q:How is carbon used in the production of activated carbon filters?
Various industries and applications widely utilize activated carbon filters. These filters are utilized in water and air purification, gas masks, and even in the production of certain chemicals. The effectiveness of activated carbon filters heavily relies on the role of carbon in their production. Activated carbon, also referred to as activated charcoal, is a type of carbon that possesses a highly porous structure and a large surface area. The creation of this porous structure is achieved through a process known as activation. Activation involves subjecting carbonaceous materials, such as coal, wood, or coconut shells, to high temperatures in the presence of steam or specific chemicals. This activation process generates tiny pores and significantly increases the carbon's surface area. Consequently, the carbon becomes adept at capturing and eliminating impurities from gases or liquids. The activated carbon's high adsorption capacity attracts impurities like organic compounds, volatile organic compounds (VOCs), and certain heavy metals to its surface. In the production of activated carbon filters, the activated carbon is commonly molded into a granular or powdered state and then packed into a filter medium, such as a mesh or a cartridge. The filter medium functions as a supportive structure for the activated carbon, enabling the passage of air or water while effectively capturing and adsorbing impurities. Activated carbon filters excel at eliminating a wide array of contaminants, including chlorine, volatile organic compounds (VOCs), odors, and specific heavy metals. Consequently, these filters greatly enhance the quality of water and air by reducing pollutants and improving odor control. Furthermore, the versatility of activated carbon allows for customization based on the specific application. For instance, activated carbon can be infused with specific chemicals to heighten its adsorption capacity for particular contaminants. It can also be specially treated to target pollutants like mercury or arsenic. In conclusion, the utilization of carbon in the production of activated carbon filters stems from its porous structure and exceptional adsorption properties. These filters play a vital role in numerous industries and applications, effectively eliminating impurities from water and air, improving their quality, and ultimately benefiting environmental and human health.
Q:What are the impacts of carbon emissions on glacier retreat?
The impacts of carbon emissions on glacier retreat are significant and alarming. As carbon dioxide and other greenhouse gases are released into the atmosphere, they trap heat and contribute to global warming. This rise in temperature directly affects glaciers by accelerating their melting and retreat. Glaciers act as natural reservoirs of freshwater, and their retreat has severe consequences for water availability, ecosystems, and human populations that depend on them. Additionally, the melting of glaciers contributes to rising sea levels, which poses a threat to coastal communities. Overall, carbon emissions play a major role in driving glacier retreat and exacerbating the impacts of climate change.
Q:Why use carbon batteries for alarm clocks?
Look at your clock is what kind of, some nickel battery (batteries) can also be a bit expensive. Lithium battery. And what in fact almost never mind, as long as you start voltage alarm on the line. You said carbon battery is called alkaline battery his standard voltage is 1.5V the charging the battery is generally 1.2V. to this problem is not a reward.
Q:What is carbon offsetting in the food industry?
Carbon offsetting in the food industry refers to the practice of neutralizing or compensating for the greenhouse gas emissions associated with food production and distribution processes. It is a way for food companies to take responsibility for their carbon footprint and contribute to global efforts in mitigating climate change. Food production and distribution contribute significantly to greenhouse gas emissions, mainly through activities such as deforestation, land use changes, energy consumption, and transportation. Carbon offsetting allows companies in the food industry to invest in projects or initiatives that reduce or remove an equivalent amount of carbon dioxide from the atmosphere, effectively balancing out their emissions. There are various methods of carbon offsetting in the food industry. One common approach is investing in renewable energy projects, such as wind farms or solar power installations, to offset the emissions produced from energy consumption in food processing facilities or transportation. Another method is supporting projects that promote sustainable agriculture practices, such as reforestation or afforestation efforts, which can sequester carbon dioxide from the atmosphere. Carbon offsetting in the food industry also extends to supply chain management. Companies can work with their suppliers to implement more sustainable farming practices, reduce waste, and optimize transportation routes to minimize emissions. By collaborating with farmers, producers, and distributors, food companies can collectively work towards reducing their overall carbon footprint and achieving carbon neutrality. It is important to note that carbon offsetting should not be seen as a substitute for reducing emissions at the source. Instead, it should be viewed as a complementary measure to support the transition towards more sustainable and low-carbon practices in the food industry. By offsetting their emissions, food companies can demonstrate their commitment to environmental stewardship and contribute to the global fight against climate change.
Q:How does carbon dioxide affect the growth of marine organisms?
Marine organisms are impacted by carbon dioxide in various ways. To begin with, the ocean's pH can be lowered by increased levels of carbon dioxide, causing ocean acidification. This change in acidity can harm the growth and development of marine organisms, particularly those with calcium carbonate shells or skeletons, such as corals, mollusks, and certain plankton species. Organisms like these may struggle to construct and maintain their structures due to high carbon dioxide levels, rendering them more susceptible to predation and hindering their overall growth and survival. Moreover, the physiology and metabolism of marine organisms can also be affected by elevated carbon dioxide levels. Research suggests that excessive carbon dioxide can disrupt the functioning of enzymes that are responsible for various biological processes, including growth and reproduction. This disruption can result in reduced growth rates, impaired reproductive success, and an overall decline in the fitness of marine organisms. Furthermore, increased carbon dioxide levels can indirectly impact marine organisms by modifying the availability and distribution of other vital nutrients and resources. For instance, heightened carbon dioxide can alter the solubility of minerals and trace elements, impacting their bioavailability to marine organisms. This disruption can disturb nutrient cycling and limit the availability of essential nutrients necessary for growth and development. In summary, the rise in carbon dioxide levels caused by human activities can have significant adverse effects on the growth and development of marine organisms. These effects can disrupt entire marine ecosystems, potentially leading to severe consequences for biodiversity and the functioning of these ecosystems.
Q:What are the impacts of carbon emissions on the stability of rainforests?
Carbon emissions have significant impacts on the stability of rainforests, leading to detrimental consequences for both the local ecosystems and the global climate. One of the most notable impacts is the direct contribution to climate change, as carbon dioxide (CO2) is a major greenhouse gas responsible for trapping heat in the atmosphere. This enhanced greenhouse effect leads to rising global temperatures, which in turn negatively affect rainforests. As temperatures increase, rainforests face several challenges. Firstly, higher temperatures can increase the frequency and intensity of droughts, making it difficult for rainforests to maintain their moisture levels. This can lead to decreased water availability for plants and animals, causing stress, reduced growth, and increased vulnerability to diseases and pests. Additionally, droughts can also increase the risk of wildfires, which can devastate large areas of rainforest and further disrupt the delicate ecosystem. Another significant impact of carbon emissions is the alteration of rainfall patterns. Climate change can disrupt the regular rainfall cycles in rainforest regions, leading to either more intense rainfall events or prolonged dry spells. These changes in precipitation patterns can disrupt the natural balance within rainforests, affecting the growth and reproduction cycles of plants and animals. For instance, certain tree species may struggle to reproduce or regenerate if their seeds require specific conditions that are no longer met due to altered rainfall patterns. Furthermore, carbon emissions contribute to increased atmospheric concentrations of CO2, which can directly affect the physiological processes of plants. While some studies suggest that higher CO2 levels can initially enhance plant growth through increased photosynthesis, the long-term effects are more complex. Elevated CO2 can alter the nutrient balance within rainforest ecosystems and may favor certain plant species over others, leading to shifts in species composition and potentially reducing overall biodiversity. Lastly, the impacts of carbon emissions on rainforests extend beyond the local ecosystem. Rainforests are crucial carbon sinks, absorbing a significant amount of the world's CO2 emissions. However, as rainforests face increased stress from climate change, their ability to absorb and store carbon may diminish. This creates a dangerous feedback loop, as reduced carbon storage in rainforests leads to even higher atmospheric CO2 levels, further exacerbating climate change. In conclusion, carbon emissions have profound impacts on the stability of rainforests. From contributing to climate change and altering rainfall patterns to affecting plant physiology and reducing carbon storage capacity, the consequences are far-reaching and detrimental. Protecting rainforests and reducing carbon emissions are essential steps in preserving the stability and biodiversity of these vital ecosystems.
Q:How to extinguish the charcoal fire?
The best way is to destroy the charcoal with residual charcoal poured into the water to save half of Tietong full out dry can be reused

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products