• 36V 4600W Grid-Tied Solar PV Inverter 4600TLM System 1
  • 36V 4600W Grid-Tied Solar PV Inverter 4600TLM System 2
  • 36V 4600W Grid-Tied Solar PV Inverter 4600TLM System 3
36V 4600W Grid-Tied Solar PV Inverter 4600TLM

36V 4600W Grid-Tied Solar PV Inverter 4600TLM

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

4600W Grid-tied Solar PV Inverter 4600TLM

 

4600TLM inverter High-yield

Max 97.6%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 100V to 550V

Two MPPtrackers for flexible PV panel configuration

 

4600TLM inverter Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

4600TLM inverter Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/RS485/DryRelay for more flexible configuration and system monitoring

4” LCDdisplay

 

 

4600TLM inverter Intelligent grid management

Reactivepoweradjustable

Self powerreducerwhenover frequency

Remoteactive/reactivepower limit control

 

 4600TLM inverter datasheet

Technical Data

SOFAR

3000TLM

SOFAR

3680TLM

SOFAR

4000TLM

SOFAR

4600TLM

SOFAR

5000TLM

Input (DC)

Max. Input Power

3100W

3800W

4160W

4800W

5200W

Max. DC power for single MPPT

2000

(200V-500V)

2400

(200V-500V)

2600

(200V-500V)

3000

(200V-500V)

Number of independent MPPT

2

Number of DC inputs

1 for each MPPT

Max. Input Voltage

600V

Start-up input voltage

100V(+/-5V)

Rated input voltage

360V

Operating input voltage range

100V-550V

MPPT voltage range

160V-500V

165V-500V

175V-500V

Max. Input current per MPPT

10A/10A

12A/12A

13A/13A

15A/15A

Input short circuit current per MPPT

12A

14A

16A

18A

Output(AC)

Rated power(@230V,50Hz)

3000VA

3680VA

4000VA

4600VA

5000VA

Max. AC power

3000VA

3680VA

4000VA

4600VA

5000VA

Nominal AC voltage

L/N/PE, 220, 230, 240

Nominal AC voltage range

180V-270V

Grid frequency range

44~55Hz / 54~66Hz

Active power adjustable range

0~100%

Max. Output Current

13A

16A

17.5A

20A

22A

THDi

<3%

Power Factor

1(Adjustable +/-0.8)

Performance

Max efficiency

97.6%

Weighted eff.(EU/CEC)

97.1%/97.3%

Self-consumption at night

<1W

Feed-in start power

20W

MPPT efficiency

>99.5%

Protection

DC reverse polarity protection

Yes

DC switch

Optional

Protection class / overvoltage category

I/III

Input/output SPD(II)

Optional

Safety Protection

Anti-islanding, RCMU, Ground fault  monitoring

Certification

CE, CGC, AS4777, AS3100, VDE 4105,  C10-C11, G83/G59 (more available on request)

Communication

Power management unit

According to certification and request

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

General data

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree of protection

IP65

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<25dB

Weight

18kg

Cooling

Nature

Dimension

344×478×165mm

Warranty

5 years

 

Solar panels

 

 

Certification

CNBM Solar strictly carries out the ISO 9001 quality control methodology and has implemented check points at every step of the production process to ensure our product performance durability and safety. The stringent quality control process has been confirmed by numerous independent agencies and LDK Solar modules earned IEC, TUV and UL certifications.

·         IEC:IEC 61215, IEC 61730 (1&2), conformity to CE

·         UL 1703 2002/03/15 Ed:3 Rev:2004/06/30

·         ULC/ORD-C1703-01 Second Edition 2001/01/01

·         UL and Canadian Standard for Safety Flat-Plate

·         ISO 9001: 2008 Quality Management Systems

·         CEC Listed: Modules are eligible for California Rebates

·         PV Cycle: Voluntary module take back and recycling program

·         MCS Certificate

 

 

FAQ

1.   How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3. How do I install my system ?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

 

Q: What is the role of a solar inverter in preventing electrical faults?
The role of a solar inverter in preventing electrical faults is to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used by appliances and the electrical grid. By regulating and controlling the flow of electricity, a solar inverter ensures that the voltage and frequency levels are within acceptable limits, preventing overloading, overheating, and electrical faults that could potentially damage the system or cause safety hazards.
Q: Can a solar inverter be used with different types of power factor correction devices?
Yes, a solar inverter can be used with different types of power factor correction devices. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power that can be used in homes and businesses. Power factor correction devices, on the other hand, are used to improve the power factor of the electrical system by reducing reactive power. The solar inverter can work in conjunction with various types of power factor correction devices, such as capacitors or active power factor correction units, to optimize the efficiency and performance of the electrical system.
Q: How does the weight of a solar inverter affect its installation process?
The weight of a solar inverter can significantly impact its installation process. Heavier inverters may require additional support structures or mounting equipment to ensure proper installation and stability. They may also require more manpower and specialized equipment during the installation process. Conversely, lighter inverters may be easier to handle and install, potentially reducing installation time and effort. Therefore, the weight of a solar inverter is an important consideration that can influence the overall installation process.
Q: What certifications should a solar inverter have?
A solar inverter should have certifications such as UL 1741, IEC 62109, and IEEE 1547 to ensure its safety, reliability, and compliance with industry standards. Additionally, certifications like ISO 9001 and ISO 14001 can demonstrate the manufacturer's commitment to quality and environmental management.
Q: What is the maximum number of solar panels that can be connected to a solar inverter?
The maximum number of solar panels that can be connected to a solar inverter depends on various factors such as the power rating and specifications of the inverter, the total power capacity of the solar panels, and the design of the solar power system. It is best to consult the manufacturer's guidelines or a professional solar installer to determine the appropriate number of solar panels that can be connected to a specific solar inverter.
Q: Can a solar inverter be used with a solar-powered electric gate system?
Yes, a solar inverter can be used with a solar-powered electric gate system. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that is required to power the electric gate system. This allows the solar energy captured by the solar panels to be utilized effectively in operating the electric gate system.
Q: What are the key factors affecting the reliability of a solar inverter?
The key factors affecting the reliability of a solar inverter include the quality and durability of its components, such as the semiconductor devices, capacitors, and transformers. The design and manufacturing processes also play a significant role, as well as the overall system integration and installation. The environmental conditions, such as temperature, humidity, and dust levels, can impact the inverter's reliability, along with the quality of the electrical grid and the stability of the solar power generation. Regular maintenance and monitoring are crucial for identifying and addressing any potential issues that may arise, ensuring the long-term reliability of the solar inverter.
Q: How does a solar inverter handle excess power production?
A solar inverter handles excess power production by converting the surplus energy generated by the solar panels into usable AC power. This excess power is either fed back into the grid or stored in batteries for later use, depending on the type of solar system setup.
Q: What is the maximum output voltage of a solar inverter?
The maximum output voltage of a solar inverter depends on its design and specifications. Generally, the maximum output voltage can range from 240 to 600 volts for residential inverters, and up to several thousand volts for commercial or utility-scale inverters.
Q: Can a solar inverter be used with a grid-interactive system?
Yes, a solar inverter can be used with a grid-interactive system. In fact, a solar inverter is an essential component of a grid-interactive system as it converts the DC (direct current) electricity produced by solar panels into AC (alternating current) electricity that can be used to power homes or businesses and also fed back into the grid. The solar inverter also manages the flow of electricity between the solar panels, batteries (if present), and the grid, ensuring efficient and safe operation of the grid-interactive system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords