• 800 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA System 1
  • 800 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA System 2
800 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA

800 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

. Pure sine wave inverter
. Selectable input voltage range for home appliances and personal computers
. Selectable charging current based on applications
. Configurable AC/Solar input priority via LCD setting
. Compatible to mains voltage or generator power
. Parallel operation with up to 6 units only available for PV1800 4KVA/5KVA
. Auto restart while AC is recovering
. Overload and short circuit protection
. Smart battery charger design for optimized battery performance
. Cold start function

 

Specification

     

RATED   POWER

1000VA /   800W

2000VA/
 
1600W

3000VA /   2400W

4000VA /   3200W

5000VA /   4000W

INPUT

Voltage

230   VAC 

Selectable   Voltage Range

170-280   VAC (For Personal Computers) ; 90-280 VAC (For Home Appliances)

Frequency   Range

50 Hz/60   Hz (Auto sensing)

OUTPUT

AC   Voltage Regulation 
 
(Batt.   Mode)

230 VAC   ± 5%

Surge   Power

2000VA

4000VA

6000VA

8000VA

10000VA

Efficiency   (Peak)

90%

93%

Transfer   Time

10 ms   (For Personal Computers) ; 20 ms (For Home Appliances)

Waveform

Pure   sine wave

BATTERY

Battery   Voltage

12 VDC

24 VDC

48 VDC

Floating   Charge Voltage

13.5 VDC

27 VDC

54 VDC

Overcharge   Protection

15 VDC

30 VDC

60 VDC

Maximum   Charge Current

10 A or   20 A

20 A or   30 A

60 A

SOLAR   CHARGER (OPTION)

Charging   Current

50 A

Maximum   PV Array Open Circuit Voltage

30 VDC

60 VDC

105 VDC

Standby   power Consumption

1 W

2 W

2 W

PHYSICAL

Dimension,   D x W x H (mm)

95 x 240   x 316

100 x   272 x 355

125 x   297.5 x 468

Net   Weight (kgs)

5.0

6.4

6.9

9.8

9.8

OPERATING   ENVIRONMENT

Humidity

5% to   95% Relative Humidity(Non-condensing)

Operating   Temperature

0°C -   55°C

Storage   Temperature

-15°C -   60°C












 

Images

 

800 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA

800 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 


Q:What is the power factor of a solar inverter?
The power factor of a solar inverter typically refers to the ratio of the real power to the apparent power consumed by the inverter. It represents the efficiency of the inverter in converting DC power from the solar panels into AC power for use in the electrical grid. A high power factor indicates a more efficient inverter that minimizes reactive power losses.
Q:Can a solar inverter be used with solar-powered air conditioning systems?
Yes, a solar inverter can be used with solar-powered air conditioning systems. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various electrical appliances, including air conditioning units. By connecting the solar inverter to the solar panels and the air conditioning system, the generated solar energy can be efficiently utilized to power the AC system.
Q:What are the common troubleshooting steps for a malfunctioning solar inverter?
The common troubleshooting steps for a malfunctioning solar inverter may include checking the power supply, inspecting the wiring connections, resetting the inverter, performing a firmware update, checking for error codes or error messages, and consulting the manufacturer's manual or contacting technical support for further assistance.
Q:What is the maximum power rating of a solar inverter?
The maximum power rating of a solar inverter typically depends on its size and capacity, but it can range from a few hundred watts to several megawatts.
Q:What is the role of a solar inverter in a solar panel system?
The role of a solar inverter in a solar panel system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power common household appliances and be fed into the electrical grid. The inverter also ensures that the solar panels operate at their maximum efficiency by tracking the maximum power point to optimize energy production.
Q:Can a solar inverter be upgraded or expanded in the future?
Yes, a solar inverter can be upgraded or expanded in the future. Upgrading or expanding a solar inverter typically involves adding additional capacity or features to the existing system. This can be done by adding more panels, batteries, or upgrading the inverter itself to accommodate increased power output. However, it is important to ensure compatibility and consult with a professional to assess the feasibility and requirements of any upgrades or expansions.
Q:Can a solar inverter be used with different monitoring platforms?
Yes, a solar inverter can be used with different monitoring platforms as long as the monitoring platforms are compatible with the inverter's communication protocols and data formats.
Q:How does MPPT improve the performance of a solar inverter?
MPPT (Maximum Power Point Tracking) is a technique used in solar inverters to enhance their performance and maximize the energy output of the solar panels. Solar panels generate direct current (DC) electricity, which needs to be converted into alternating current (AC) to be used by household appliances or fed back to the grid. However, the amount of power generated by solar panels varies depending on factors like sunlight intensity, temperature, shading, and panel orientation. MPPT algorithms enable solar inverters to continuously track and adjust the operating point of the solar panels to extract the maximum power available. By continuously monitoring the voltage and current output of the solar panels, the MPPT controller determines the optimal operating voltage and current that will yield the highest power output. This optimization process is crucial because solar panels have a specific voltage and current combination at which their power output is maximized, known as the maximum power point (MPP). By operating the solar panels at their MPP, MPPT significantly improves the overall efficiency and performance of the solar inverter. With MPPT, solar inverters can adapt to changing environmental conditions and extract the maximum available power from the solar panels. This allows for increased energy production, reducing the reliance on grid electricity and maximizing the return on investment in solar installations. In summary, MPPT improves the performance of a solar inverter by optimizing the operating point of the solar panels to extract the maximum power available. This leads to increased energy production, improved efficiency, and better utilization of solar energy resources.
Q:Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. During a power outage, the solar inverter relies on the grid to function, and without grid power, it cannot convert DC power from the solar panels into usable AC power.
Q:What is the role of a galvanic isolation circuit in a solar inverter?
The role of a galvanic isolation circuit in a solar inverter is to provide electrical separation and insulation between the DC input side (solar panels) and the AC output side (grid connection). This isolation helps to protect the solar inverter and the electrical grid from potential hazards such as voltage surges, ground faults, or electrical noise. It also improves the safety of the system by reducing the risk of electric shock and prevents the flow of potentially damaging currents.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords