• Biggest Solar Inverter 3600MTL-US 5000MTL-US ETL FCC System 1
  • Biggest Solar Inverter 3600MTL-US 5000MTL-US ETL FCC System 2
  • Biggest Solar Inverter 3600MTL-US 5000MTL-US ETL FCC System 3
Biggest Solar Inverter 3600MTL-US 5000MTL-US ETL FCC

Biggest Solar Inverter 3600MTL-US 5000MTL-US ETL FCC

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT OR LC
Min Order Qty:
10 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Solar Inverter 3600MTL-US-5000MTL-US, ETL FCC


Specifications

Maximum efficiency over 97.8%
MPP control
MTL-String
RS485 RS232 bluetooth DC-switch
VDE 0126-1-1,IEC 62109,RD 1663,G83

3600 4200 5000 MTL-US

General Descriptions

Leading-Edge Technology

> Maximum efficiency of 97.9 % and wide input voltage range

> Internal DC switch

> Transformerless H6 topology

> Compact design

> Muti MPP controller

> MTL-String

> Bluetooth technology

> Easy installation

> Sound control


Communications
> RS485 /RS232/GPRS interfaces
> Computer monitoring software


Safety
> Full protection functions:DC reverse polarity, AC short-circuit protection, ground fault monitoring, grid monitoring, integrate all-pole sensitive, leakage current monitoring unit.

> Standards complied: Ul1741, UL1998, IEEE1547, CSA C22.2 No.107.1,FCC Part15(Class A&B)



Solar Inverter 3600MTL-US-5000MTL-US, ETL FCC



Solar Inverter 3600MTL-US-5000MTL-US, ETL FCC




Technical Specifications


Model

Specifications

3600MTL-US

4200MTL-US

5000MTL-US

Input data


Max. DC power

3800W

4400W

5200W

Max. DC voltage

600V

600V

600V

Start voltage

150V

150V

150V

DC nominal voltage

360V

360V

360V

PV voltage range

100V-600V

100V-600V

100V-600V

MPP voltage range

120V-550V

120V-550V

120V-550V

Number of independent MPP trackers/strings per MPP tracker

2/2

2/2

2/2

Max. input current of the MPP tracker

12A

15A

15A

Output data


Nominal AC output power

3600W

4200W

4600W

Max. output current

18/17.1A/14.8A

21A/20A/17.2A

22A/23.7A/20.5A

AC nominal voltage; range

Default:240V single phase optional:208,240or277 single phase 183-228@208V 211-264V@240V 244-305@277V

AC grid frequency; range

60Hz;59.3-60.5Hz

60Hz;59.3-60.5Hz

60Hz;59.3-60.5Hz

Phase shift (cosφ)

1

1

1

THDI

<3%< p="">

<3%< p="">

<3%< p="">

AC connection

Single phase

Single phase

Single phase

Efficiency


Max. efficiency

98%

98%

98%

CEC efficiency

97%

97%

97%

MPPT efficieny

99.5%

99.5%

99.5%

Protection devices


DC reverse polarity protection

yes

yes

yes

DC switch rating for each MPPT

yes

yes

yes

Output over current protection

yes

yes

yes

Output overvoltage protection-varistor

yes

yes

yes

Ground fault monitoring

yes

yes

yes

Grid monitoring

yes

yes

yes

Integrated all - pole sensitive       leakage current monitoring unit

yes

yes

yes

General Data


Dimensions (W / H / D) in mm

360/650/188

360/650/188

360/650/188

Weight

28.3KG

28.3KG

28.3KG

Operating temperature range

-25...+60°C  (-13...+ 140°F)   with derating above 45°C(131°F)

-25...+60°C  (-13...+ 140°F)   with derating above 45°C(131°F)

-25...+60°C  (-13...+ 140°F)   with derating above 45°C(131°F)

Noise emission (typical)

≤ 25 dB(A)

≤ 25 dB(A)

≤ 25 dB(A)

Altitude

Up to 2000m(6560ft) without power derating

Relative humidity

95%

Consumption: operating(standby) / night

<5W / < 0.5 W

<5W / < 0.5 W

<5 W / < 0.5 W

Topology

transformerless

transformerless

transformerless

Cooling concept

Natural

Natural

Natural

Enclosure

Type 3R

Type 3R

Type 3R

Features


DCconnection:

Screw terminal

Screw terminal

Screw terminal

AC connection:

Screw terminal

Screw terminal

Screw terminal

display

LCD

LCD

LCD

Interfaces: RS485/RS232/Bluetooth/RF/Zigbee

yes/yes/opt/opt/ opt

yes/yes/opt/opt/opt

yes/yes/opt/opt/opt

Warranty: 10 years / 15 years

yes /opt

yes /opt

yes /opt

Certificates and approvals

UL1741,UL1998 IEEE 1547, CSA C22.2 No.107.1-1,FCC Part15(Class A&B)




Q: How does the harmonic distortion affect the performance of a solar inverter?
Harmonic distortion can negatively impact the performance of a solar inverter. It can cause increased heat generation, reduced power quality, and can lead to premature failure of components. Additionally, harmonic distortion can interfere with other electrical devices connected to the inverter, causing disruptions and potential damage. Therefore, minimizing harmonic distortion is essential for maintaining optimal performance and efficiency of a solar inverter.
Q: How does a solar inverter affect the overall system performance in different weather conditions?
A solar inverter plays a crucial role in the overall performance of a solar power system in various weather conditions. It helps optimize the conversion of direct current (DC) generated by solar panels into alternating current (AC) that is used to power homes and businesses. During sunny weather, a high-quality inverter ensures maximum power extraction from the solar panels, resulting in higher energy production and improved system performance. In contrast, in overcast or low-light conditions, a well-designed inverter can still efficiently convert the available solar energy, albeit at a reduced capacity. Moreover, advanced inverters often incorporate technologies like maximum power point tracking (MPPT) to adapt to changing weather conditions, ensuring optimal performance and energy generation regardless of weather variations.
Q: Can a solar inverter be used with different types of solar panels?
Yes, a solar inverter can typically be used with different types of solar panels. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various electrical devices. As long as the solar panels produce compatible DC voltage and current, they can be connected to the solar inverter regardless of their type, such as monocrystalline, polycrystalline, or thin-film panels. However, it is important to ensure that the solar inverter is appropriately sized and compatible with the total capacity of the connected solar panels for optimal performance.
Q: How does the efficiency of a solar inverter affect the overall system performance?
The efficiency of a solar inverter plays a crucial role in determining the overall performance of a solar system. A higher efficiency inverter converts a greater percentage of the energy generated by the solar panels into usable electricity. This means that less energy is lost as heat, resulting in more electricity being available for consumption. A more efficient inverter translates into increased energy production, reduced reliance on grid power, and ultimately, higher cost savings. Additionally, a highly efficient inverter enhances the stability and reliability of the system, ensuring optimal performance and longevity.
Q: What is the cost of a solar inverter?
The cost of a solar inverter can vary depending on various factors such as the brand, size, capacity, and additional features. Generally, residential solar inverters can range from $500 to $2,000, while commercial or larger-scale inverters can cost several thousand dollars. It is recommended to consult with a solar installer or supplier to get an accurate cost estimate based on your specific requirements.
Q: What are the potential risks of overvoltage in a solar inverter?
The potential risks of overvoltage in a solar inverter include damage to the inverter itself, as well as other connected electrical equipment. It can lead to overheating, arcing, and even electrical fires. Additionally, overvoltage can cause a significant decrease in the lifespan and efficiency of solar panels, reducing their overall performance. It is crucial to have proper protective measures in place, such as surge protectors and voltage regulators, to mitigate these risks.
Q: Can a solar inverter be used with a three-phase power system?
Yes, a solar inverter can be used with a three-phase power system. In fact, many solar inverters are designed to work specifically with three-phase power systems. These inverters convert the DC power generated by solar panels into AC power that can be used by the three-phase electrical grid.
Q: How is the output voltage and frequency of a solar inverter regulated?
The output voltage and frequency of a solar inverter are regulated through advanced control algorithms and feedback mechanisms. These control algorithms continuously monitor the input power generated by the solar panels and adjust the inverter's output voltage and frequency accordingly. The regulation process involves various components such as voltage regulators, frequency detectors, and digital signal processors that ensure the output voltage and frequency are in sync with the grid or the desired specifications. Additionally, some inverters may also have built-in mechanisms to protect against voltage and frequency fluctuations, ensuring a stable and reliable power supply to connected devices or the grid.
Q: What are the main components of a solar inverter?
The main components of a solar inverter include the DC to AC inverter, MPPT (Maximum Power Point Tracking) controller, safety features such as circuit breakers and fuses, and monitoring systems for performance tracking.
Q: What is the role of a power control unit in a solar inverter?
The role of a power control unit in a solar inverter is to regulate and control the flow of electricity between the solar panels and the grid. It ensures maximum power output from the solar panels by optimizing their performance and matching it with the electrical requirements of the grid. Additionally, it provides protection against overvoltage, overcurrent, and other electrical faults to ensure safe and efficient operation of the solar inverter system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords