• Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard System 1
  • Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard System 2
  • Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard System 3
  • Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard System 4
  • Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard System 5
Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard

Prime Hot rolled Spring Steel Bar/billet/products JIS standard/Europe standard/ ASTM standard

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
1200 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

Spring steel flat bar 
Garde: 60Si2Mn, 60Si2MnA, 55CrMnA,50CrVA 
Standard GB,JIS,ASTM,DIN,AISI,BS 
LF & VD forge;ISO&TUV appr

 

Materials

 

 

Q195,Q215,Q235B,Q345B,

 

S235JR/S235/S355JR/S355

 

SS440/SM400A/SM400B  

Product Category 

Metallurgy,Mineral &Energy 

Technique 

 HOT ROLLED

 

Packing

 

1.Big OD:in bulk

2.Small OD:packed by steel strips

3.woven cloth with 7 slats

4.according to the requirements of customers

 Usage

Mechanical&manufacture,Steel strcuture,

  Shipbuilding,Bridging,Automobile chassis 

Main market

Middle East,Africa, Asia and some Uropean country and America ,

Australia 

 

Country of origin

 

 China 

Productivity

 15000 Metric Tons pet Month 

Remark

Payment terms :T/T ,L/C

Terms of trade :FOB ,CFR,CIF ,DDP,EXW

Minimum order : 10 tons

Lead time :on or before  3-15 working days . 


Q:What are the specific requirements for special steel used in the food processing industry?
The food processing industry has strict requirements for special steel due to its critical nature and the need for high levels of hygiene and safety. Some key requirements for special steel in this industry are as follows: 1. Excellent corrosion resistance: Special steel must be able to withstand exposure to food products, cleaning agents, and moisture without corroding. This is important to prevent contamination and ensure the longevity of equipment. 2. Hygienic design: Steel used should have a smooth and non-porous surface to prevent the accumulation of food particles, bacteria, and other contaminants. It should also be easy to clean and sanitize to maintain hygiene. 3. Non-reactivity: The steel should not react with food products, particularly acidic or alkaline items, to avoid any changes in taste or quality. 4. High temperature resistance: Special steel should be able to withstand high temperatures during cooking, sterilization, and baking processes without any adverse effects on the food or equipment. 5. Sufficient mechanical strength: The steel should have enough strength to withstand the stresses and strains of food processing operations, such as impacts and vibrations, without deforming or breaking. 6. Compliance with food safety regulations: Special steel must meet relevant food safety regulations and standards. It should be free from harmful substances that can leach into the food, such as lead and cadmium. 7. Traceability: Special steel used in the industry should be traceable with proper documentation and certification to ensure its origin and quality. This helps maintain transparency and accountability in the supply chain. These requirements ensure that special steel used in the food processing industry meets the highest standards of quality, hygiene, and safety, protecting consumers' health and maintaining the integrity of food products.
Q:How does special steel resist fatigue?
Special steel is designed to resist fatigue by incorporating specific properties that enhance its durability and strength. One of the primary factors that allows special steel to resist fatigue is its high tensile strength. This means that the steel can withstand large amounts of stress and load without deforming or breaking, which is crucial in preventing the initiation and propagation of fatigue cracks. Additionally, special steel often undergoes specific heat treatment processes, such as quenching and tempering, to further enhance its resistance to fatigue. This heat treatment modifies the microstructure of the steel, creating a fine and uniform grain structure that improves its mechanical properties. It increases the steel's hardness and toughness, making it less susceptible to fatigue failure. Furthermore, special steel can also contain alloying elements such as chromium, molybdenum, and vanadium, which contribute to its fatigue resistance. These alloying elements form carbides and other strengthening phases within the steel, resulting in improved hardness, strength, and resistance to fatigue crack propagation. Moreover, special steel can undergo specialized surface treatments, such as shot peening or nitriding. Shot peening bombards the steel surface with small metal particles, inducing compressive residual stresses. These compressive stresses counteract the tensile stresses that cause fatigue cracks, thus enhancing fatigue resistance. Nitriding involves diffusing nitrogen into the steel surface, creating a hardened layer that improves wear resistance and, consequently, fatigue resistance. In summary, special steel resists fatigue through a combination of factors, including high tensile strength, specific heat treatment processes, alloying elements, and specialized surface treatments. These properties work together to enhance the steel's durability, strength, and resistance to fatigue crack initiation and propagation, making it a reliable and long-lasting material in various applications.
Q:How does special steel contribute to the automotive suspension spring industry?
Enhanced performance and durability in the automotive suspension spring industry are provided by special steel, which plays a crucial role. These springs bear the weight of the vehicle and absorb road shocks, ensuring a smooth and comfortable ride for passengers. Also known as alloy steel, special steel is specifically designed to possess exceptional mechanical properties. These include high strength, toughness, and resistance to wear and fatigue. Such properties are vital for suspension springs, as they must endure the constant stresses and strains of vehicle operation. The utilization of special steel in automotive suspension springs allows for the production of lighter yet stronger and more reliable springs compared to traditional steel ones. Consequently, this leads to improved fuel efficiency, reduced vehicle weight, lower emissions, and a more sustainable automotive industry. Moreover, special steel enables suspension springs to maintain their shape and performance over extended periods, even under extreme conditions. This ensures that the vehicle's suspension system remains effective, providing a stable and comfortable driving experience. Additionally, special steel can be customized to meet the specific requirements of different vehicles. This allows for the tailoring of suspension springs based on factors such as vehicle weight, load capacity, and desired ride quality. The flexibility in material properties enhances the overall performance and safety of the suspension system. In summary, special steel is essential in the automotive suspension spring industry as it provides the necessary strength, durability, and performance characteristics for a reliable and efficient suspension system. Its use contributes to the development of lighter, more fuel-efficient vehicles while ensuring passenger comfort and safety.
Q:What is the significance of alloying elements in special steel?
Alloying elements in special steel play a crucial role in enhancing its properties and performance. These elements, such as chromium, nickel, manganese, and molybdenum, are added to improve characteristics like strength, hardness, corrosion resistance, and heat resistance. The combination and proportion of alloying elements determine the specific properties of the steel, making it suitable for various applications, such as manufacturing aircraft parts, automotive components, or tools. Overall, alloying elements greatly contribute to the versatility and functionality of special steel.
Q:How does tool steel maintain its hardness at high temperatures?
Tool steel maintains its hardness at high temperatures due to its high carbon content and the presence of alloying elements such as tungsten, molybdenum, and vanadium. These elements form carbides, which enhance the steel's ability to retain its hardness even under extreme heat. Additionally, the steel's fine grain structure and heat treatment processes contribute to its high temperature hardness retention.
Q:How does special steel perform in high-temperature strength?
Special steel, also known as high-temperature steel, is specifically designed to excel in high-temperature strength applications. Unlike standard steels, which may lose their strength and structural integrity at elevated temperatures, special steel retains its mechanical properties even under extreme heat conditions. One of the key reasons behind the exceptional high-temperature strength of special steel is its unique composition. It is typically alloyed with elements such as chromium, nickel, and molybdenum, which significantly enhance its resistance to the effects of thermal expansion, oxidation, and creep. These alloying elements form stable oxides on the surface of the steel, acting as a protective layer that prevents further oxidation and corrosion, thereby maintaining the material's strength and integrity. Moreover, the microstructure of special steel plays a crucial role in its high-temperature performance. Through advanced manufacturing techniques, special steel is engineered to have a fine-grained structure, which improves its resistance to deformation and improves its creep strength. The fine grains also contribute to its ability to retain its mechanical properties at elevated temperatures for prolonged periods. Additionally, special steel undergoes rigorous heat treatment processes, such as quenching and tempering, which further enhance its high-temperature strength. These processes help to refine the microstructure and optimize the mechanical properties of the steel, including its hardness, toughness, and resistance to thermal fatigue. In conclusion, special steel is specifically designed and engineered to excel in high-temperature strength applications. Its unique composition, microstructure, and heat treatment processes contribute to its exceptional resistance to thermal expansion, oxidation, and creep, ensuring that it retains its mechanical properties and structural integrity even under extreme heat conditions.
Q:What are the main applications of special steel in the chemical industry?
Special steel is widely used in the chemical industry due to its excellent properties such as corrosion resistance, high temperature resistance, and strength. It is primarily used in the construction of chemical processing equipment, including reactors, pipes, valves, and storage tanks. Special steel ensures the safe and efficient handling of corrosive chemicals, as well as the prevention of leaks and contamination. Additionally, it is utilized in the production of catalysts, which play a crucial role in various chemical reactions. Overall, special steel enables the chemical industry to maintain high product quality, operational efficiency, and safety standards.
Q:How is wear-resistant steel used in mining equipment?
Wear-resistant steel is commonly used in mining equipment due to its high durability and strength. It is utilized in various applications such as excavator buckets, crusher liners, and conveyor parts to withstand the harsh conditions of mining operations. The wear-resistant properties of this steel help to minimize abrasion and extend the equipment's lifespan, resulting in increased productivity and reduced maintenance costs.
Q:What are the requirements for special steel used in power plants?
Given the critical role that these materials play in ensuring the safe and efficient operation of power generation facilities, the requirements for special steel used in power plants are specific and stringent. Here are some of the key requirements: 1. Withstanding high temperatures: Special steel used in power plants must maintain its structural integrity even at elevated temperatures, especially in areas like the combustion chamber or steam turbines. 2. Excellent corrosion resistance: Power plants often operate in environments with high levels of moisture, chemicals, and other corrosive elements. Special steel must be able to resist corrosion to prevent degradation and premature failure. 3. High strength and toughness: Power plants generate substantial amounts of energy, so the components made of special steel must be strong and tough enough to withstand mechanical stresses and loads. This includes resistance to fatigue, creep, and stress corrosion cracking. 4. Good weldability: Welding is often necessary during the fabrication or maintenance of power plant components. Special steel should have good weldability to ensure strong and reliable joints that maintain the overall system's structural integrity. 5. Low thermal expansion: Special steel used in power plants should have low thermal expansion properties to minimize the risk of thermal stress and distortion caused by temperature variations during operation. This prevents premature failure and ensures dimensional stability. 6. Resistance to radiation: In some power plants, such as nuclear facilities, special steel may be exposed to radiation. Therefore, the steel should have good resistance to radiation damage, ensuring long-term performance and safety. 7. Compliance with industry standards: Special steel used in power plants must meet specific industry standards and codes to ensure quality, reliability, and safety. These standards may include ASTM, ASME, or ISO, among others. Overall, the requirements for special steel used in power plants are driven by the need for high temperature resistance, corrosion resistance, strength, weldability, low thermal expansion, radiation resistance, and compliance with industry standards. Meeting these requirements ensures the integrity and longevity of power plant components, contributing to the safe and efficient generation of electricity.
Q:What are the factors that affect the weldability of special steel?
The factors that affect the weldability of special steel include the chemical composition of the steel, the presence of impurities or alloying elements, the heat treatment history, the thickness of the steel, the welding process and technique used, and the pre-weld and post-weld treatments.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords