• Solar On-Grid Inverter 5kw 2MPPTs 5000TL System 1
  • Solar On-Grid Inverter 5kw 2MPPTs 5000TL System 2
  • Solar On-Grid Inverter 5kw 2MPPTs 5000TL System 3
Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
50000 watt
Supply Capability:
3000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.   Structure of Solar On-grid Inverter 5kw 2MPPTs 5000TL Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

 

2.   Main Features of the Solar On-grid Inverter 5kw 2MPPTs 5000TL

﹒2 MPPT channels, new generation technology

Two high speed MPPT for real time power tracking and improved energy harvesting

High frequency transformer operation for highest efficiency: 97.4% (97.0% Euro)

Certified grid connected operation according to the international standards

True Sine Wave Output        

Integrated RS-485/RS-232 serial communication

Multi-language display

2 MPPT channels can be independent or parallel, auto detecting operation

 

3. Solar On-grid Inverter 5kw 2MPPTs 5000TL Images

 

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL


 

4. Solar On-grid Inverter 5kw 2MPPTs 5000TL Specification

CHARACTERISTICS

Suntwins 5000TL 

Input Data(DC side)

Max. DC power(Total)

5300W

Max.DC power per MPPT

3000W

Max. DC voltage

500Vdc

MPPT Operating range

100~450Vdc

Number of parallel inputs

2

Number of MPPT trackers

2

Max. input current per MPPT

IN1:15A/IN2:15A

Output Data(AC side)

Nominal output power

4950W

Max. Output power

4950W

Nominal output current

21.5A

Max. output current

25A

Nominal AC voltage

230Vac

AC voltage range *

190~265Vac

Nominal AC grid frequency

50Hz

AC grid frequency range*

50 ± 5 Hz

Power factor(cos φ)

>0.99

Harmonic distortion(THDI)

<3%(at nominal output power)

Efficiency

Max. efficiency

97.4%

Euro efficiency

97.0%

MPPT efficiency

99.6%

Genaral data

Dimensions (W / D / H)

345*152*435mm

Net weight

18Kg

Operating temperature range

–25 °C ~ +60 °C

Noise emission (typical)

≤ 25 dB(A)

Power consumption at night

0 W

Electrical isolation

No

Cooling concept

Natural cooling

IP Code

IP65

Communication

RS-232(RS485 is optional)

 

 

5.  FAQ of Solar On-grid Inverter 5kw 2MPPTs 5000TL

Q1. What is the difference between inverter and solar inverter?
A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?
A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q3. What is the waranty of product?
A3. 12 months.


Q:Can a solar inverter be used with dual-axis solar trackers?
Yes, a solar inverter can be used with dual-axis solar trackers. A solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices or be fed into the grid. The dual-axis solar trackers enable the solar panels to follow the sun's movement in both horizontal and vertical directions, maximizing their exposure to sunlight throughout the day. The solar inverter can still perform its function of converting DC to AC regardless of the type of solar tracking system used.
Q:How does the maximum AC current rating affect the performance of a solar inverter?
The maximum AC current rating of a solar inverter determines its capacity to handle and convert the DC power generated by solar panels into usable AC power for the electrical grid. A higher maximum AC current rating allows the inverter to handle larger amounts of power, enabling it to support more solar panels or higher power output. This ensures efficient and uninterrupted performance of the solar inverter, allowing it to meet the energy demands of the system and maximize solar energy production.
Q:What is the role of a solar inverter in protecting the electrical grid?
The role of a solar inverter in protecting the electrical grid is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that is compatible with the grid. It ensures that the solar power generated is synchronized with the grid's voltage and frequency, allowing for seamless integration and preventing any disruptions or voltage fluctuations that could potentially harm the grid. Additionally, solar inverters have built-in safety mechanisms such as anti-islanding protection, which disconnects the solar system from the grid during a power outage, ensuring the safety of utility workers who may be working on the grid. Overall, solar inverters play a crucial role in ensuring the stability, reliability, and safety of the electrical grid when incorporating solar energy.
Q:Can a solar inverter be used with batteries?
Yes, a solar inverter can be used with batteries. In fact, using a solar inverter with batteries is a common practice in solar energy systems. The inverter helps convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power various appliances and devices. When batteries are connected to the system, the excess electricity generated by the solar panels can be stored in the batteries for later use, allowing for continuous power supply even when the sun is not shining.
Q:What is the role of a maximum power point tracker (MPPT) in a solar inverter?
The role of a maximum power point tracker (MPPT) in a solar inverter is to optimize the efficiency and power output of a solar panel system. Solar panels generate direct current (DC) electricity, but most appliances and the electrical grid operate on alternating current (AC). The MPPT is responsible for continuously adjusting the operating conditions of the solar panels to extract the maximum power available from the sunlight. It tracks the maximum power point (MPP) at which the solar panels can generate the most electricity efficiently. This is important because the output of a solar panel is highly dependent on factors such as temperature, shading, and the angle of the sun. By continuously monitoring and adjusting the voltage and current of the solar panel system, the MPPT ensures that the solar panels are always operating at the MPP, maximizing the power output. It achieves this by dynamically changing the electrical load on the solar panels to find the optimal operating point. The MPPT also acts as a converter, transforming the DC power generated by the solar panels into the AC power required for use by appliances or for feeding back into the electrical grid. This conversion process involves transforming the voltage and frequency of the electricity to match the requirements of the appliances or the grid. Overall, the role of a maximum power point tracker in a solar inverter is to optimize the efficiency and power output of the solar panel system, ensuring that the maximum amount of energy is harnessed from the sunlight and effectively utilized for various applications.
Q:What is the role of power factor correction in a solar inverter?
The role of power factor correction in a solar inverter is to improve the efficiency and performance of the inverter by correcting and optimizing the power factor of the electrical system. By adjusting the phase relationship between voltage and current, power factor correction ensures that the inverter draws and supplies power more effectively, reducing energy losses, improving power quality, and minimizing harmonics in the system. This helps to maximize the overall power output and reliability of the solar inverter, leading to better energy conversion and utilization.
Q:How does a solar inverter protect against overvoltage and overcurrent?
A solar inverter protects against overvoltage by continuously monitoring the voltage levels of the solar panels and adjusting the conversion process to ensure that the output voltage remains within a safe range. In case of overvoltage, the inverter automatically reduces the power output or shuts down to prevent damage to the system. Similarly, the inverter safeguards against overcurrent by constantly monitoring the current flowing through the system. If the current exceeds the safe limits, the inverter utilizes protective measures such as reducing the power output, regulating the current, or triggering a shutdown to prevent any potential damage to the solar panels or connected devices.
Q:How does a solar inverter handle voltage drop?
A solar inverter is designed to handle voltage drop by continuously monitoring the voltage level of the solar panels. If the voltage drops below a certain threshold, the inverter adjusts its internal electronics to compensate for the drop and ensure a consistent output voltage. This allows the inverter to maintain optimal performance and efficiency even in situations with voltage fluctuations or drops.
Q:Photovoltaic grid-connected inverter problem
But Baidu Encyclopedia clearly pointed out: the zero line is the secondary side of the transformer leads the neutral point of the line, and the phase line constitutes a circuit for power supply equipment.
Q:Can a solar inverter be used with different battery chemistries?
Yes, a solar inverter can be used with different battery chemistries as long as the inverter is compatible with the specific battery chemistry and its voltage requirements. However, it is important to ensure that the inverter is designed to work efficiently with the particular battery chemistry to avoid any compatibility issues or potential damage to the system.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords