• High frequency  transformer isolation  PV  Grid-Tied Inverter System 1
  • High frequency  transformer isolation  PV  Grid-Tied Inverter System 2
  • High frequency  transformer isolation  PV  Grid-Tied Inverter System 3
  • High frequency  transformer isolation  PV  Grid-Tied Inverter System 4
High frequency  transformer isolation  PV  Grid-Tied Inverter

High frequency transformer isolation PV Grid-Tied Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
50 mm
Supply Capability:
1000 mm/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

· The highest effciency achieves 98%
· Wide input Voltage range
· Adopt connectors type cable connection, Easy operation and installation
· Best tracking effciency with OptiTrac MPP control
· operating temperature range -25 ℃ to + 55℃
· High reliability due to complete protection function
· Anti-theft protection
· Plug-in grounding

HF series 1.5kw — 5.0kw


High frequency transformer isolation is the main feature of our production, which make Installation easier due to the reduced weight and higher conversion effciency because of omitting Low frequency transformer. The wide input voltage range from 180 to 600volt gives you extraordinary fexibility for you system design. Not need to set graphic display and RS485 communication system make the devices highly user-friendly.


This product can by multi-level parallel combination for 6kw to 20kw needed any power grade HF series technical parameter.


parameters:

GT1.5-ZX-01/HF

GT2.0-ZX-01/HF

GT2.5-ZX-01/HF

GT3.0-ZX-01/HF

GT4.0-ZX-01/HF

GT5.0-ZX-01/HF

Input(DC)

Max.DC Power

1600W

2100W

2650W

3150W

4200W

5200W

Max.DC Voltage

600V

PV Voltage range, MPPT

150V ~ 550V

150V ~ 550V

Max.input current

10.0A

14.0A

16.0A

20.0A

25.0A

30.0A

Number of MPP trackers

1

Max.number of strings (parallel)

1

1

2

2

3

3

Output(AC)

Nominal AC power /
Max AC power

1500W

2000W

2500W

3000W

4000W

5000W

Max.output current

13.0A/7.0A

17.0A/9.0A

21.0A/12.0A

25.0A/14.0A

21.0A

30.0A

Nominal AC Voltage / range

102-138Vac/180-264Vac

180-270Vac

AC grid frequency / range

47.5-51.5Hz / 59.3-60.5Hz

Power factor at rated power

1

THD

< 3%

AC connection

Single-phase

Efficiency

Max. efficiency/Californian efficiency

> 98.0% / > 97.0%

MPP adaptation efficiency

> 99.0%

Protection devices

DC reverse polarity protection

AC short-circuit protection

Ground fault monitoring

Grid monitoring

Output Transient Voltage Suppression

Over load

Anti-islanding

General data

Dimensions

(W/ H / D) in mm

350 / 560 / 160

370 / 540 / 185

Weight(Kg)

16

19

23

Operating temperature range

-25 ~ +60

Storage temperature range

-40 ~ +70

Ambient humidity

0 100%

Consumption (night)

< 0.5W

Topology

HF-transformer galvanic isolation

Cooling concept

Convection

Enclosure type

IP65 / NEMA 3R

Features

DC connection: PV special connector

AC connection: connector

LCD display & Backlit

LED display

Interfaces: RS485

Warranty: 10 years

Certificates & approvals

G83 / G59 / TUV / SAA / ETL / JET/ CE

 

 

 

FAQ

 

Q1 : Do you accept OEM/ODM?

ODM&OEM are warmly welcomed !!!

 

Q2 : what’s your payment?

 

a)We can accept payment terms of T/T, Western Union, PayPal

 

Samples and trial order accept PayPal ,T/T & Western Union. normal order accept T/T &Western Union 

 

b) 30% ADVANCE DEPOSIT after buyer's confirmed payment, the balance should be paid before shipping when goods are ready.



Q:How does a solar inverter handle high temperatures?
A solar inverter is designed to handle high temperatures by incorporating various heat management techniques. It uses heat sinks, fans, or other cooling mechanisms to dissipate excess heat generated during operation. Additionally, advanced thermal management systems are employed to regulate the internal temperature and prevent overheating. This ensures the inverter's efficiency and reliability even in hot weather conditions.
Q:Can a solar inverter be used with building-integrated photovoltaics (BIPV)?
Yes, a solar inverter can be used with building-integrated photovoltaics (BIPV). In fact, a solar inverter is an essential component of any BIPV system as it converts the direct current (DC) generated by the BIPV panels into alternating current (AC) that can be used to power electrical devices in a building or fed back into the grid.
Q:How do you calculate the efficiency loss due to temperature for a solar inverter?
To calculate the efficiency loss due to temperature for a solar inverter, you need to consider the temperature coefficient of the inverter. The temperature coefficient represents the percentage decrease in efficiency for every degree Celsius increase in temperature. By multiplying the temperature coefficient with the temperature difference from the inverter's rated temperature, you can estimate the efficiency loss. For example, if the temperature coefficient is 0.5% per degree Celsius and the temperature increase is 10 degrees Celsius, the efficiency loss would be 5%.
Q:What are the potential risks of electrical shock from a solar inverter?
The potential risks of electrical shock from a solar inverter include direct contact with live electrical components, inadequate insulation or grounding, improper installation or maintenance, and failure to follow safety guidelines. Electrical shocks can cause injury, burns, and even fatalities. It is crucial to ensure proper precautions are taken, such as using qualified electricians, following manufacturer instructions, and implementing safety measures to mitigate these risks.
Q:How does a solar inverter handle temperature variations?
A solar inverter handles temperature variations by employing various cooling mechanisms such as heat sinks, fans, or liquid cooling systems. These components help dissipate excess heat generated during operation, ensuring the inverter remains within its optimal temperature range. Additionally, advanced inverters are equipped with temperature sensors that continuously monitor the internal temperature and adjust the system's performance to maintain efficiency and protect against overheating.
Q:Are there any ongoing maintenance requirements for a solar inverter?
Yes, there are ongoing maintenance requirements for a solar inverter. Regular inspections, cleaning, and monitoring of the inverter's performance are necessary to ensure its optimal functioning. Additionally, checking for any loose connections, updating firmware, and addressing any potential issues promptly are part of the maintenance routine.
Q:What is the lifespan of the capacitors in a solar inverter?
The lifespan of capacitors in a solar inverter can vary depending on various factors, such as the quality of the components, operating conditions, and maintenance. Generally, high-quality capacitors can have a lifespan of around 10 to 15 years. However, it is important to regularly monitor and maintain the inverter to ensure optimal performance and longevity of the capacitors.
Q:What is the difference between a grid-tied and off-grid solar inverter?
A grid-tied solar inverter is designed to convert the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used in a home or business. It is connected to the utility grid, allowing surplus electricity to be sold back to the grid. In contrast, an off-grid solar inverter is specifically designed to be used in standalone systems where there is no access to the utility grid. It converts the DC electricity generated by solar panels into AC electricity for immediate use or storage in batteries for later use.
Q:Installation and maintenance of photovoltaic grid - connected inverter
Before the installation should first check whether the inverter in the transport process for damage. When selecting the installation site, there should be no interference with any other power electronic equipment in the surrounding area.
Q:How does a solar inverter handle voltage and frequency regulation?
A solar inverter handles voltage and frequency regulation by converting the direct current (DC) generated by solar panels into alternating current (AC) that is suitable for use in homes and businesses. It ensures that the voltage and frequency of the AC output are within the acceptable range set by the grid or electrical appliances. This is achieved through the use of control circuitry and algorithms that continuously monitor and adjust the DC input to maintain a stable and consistent AC output.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords