• Calcined Anthracite FC82-90 Made From Taixi Anthracite System 1
  • Calcined Anthracite FC82-90 Made From Taixi Anthracite System 2
Calcined Anthracite FC82-90 Made From Taixi Anthracite

Calcined Anthracite FC82-90 Made From Taixi Anthracite

Ref Price:
get latest price
Loading Port:
Lianyungang
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
3500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Calcined Anthracite FC82-90


Packaging & Delivery

25kgs/50kgs/1ton per bag or as buyer's request

Features

Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request

It used the high quality anthracite as raw materials through high temperature calcined at over 2000 by the DC electric calciner with results in eliminating the moisture and volatile matter from anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation. It has good characteristics with low ash, low resistvity, low sulphur, high carbon and high density. It is the best material for high quality carbon products.

Advantage and competitive of caclined anthracite

1. strong supply capability 

2. fast transportation

3. lower and reasonable price for your reference

4.low sulphur, low ash

5.fixed carbon:95% -90%

6..sulphur:lower than 0.3%

General Specification of Calcined Anthracite

FC95
94939290
ASH4566.58.5
V.M.1111.51.5
S0.30.30.30.350.35
MOISTURE0.50.50.50.50.5

Pictures

Calcined Anthracite FC82-90 Made From Taixi Anthracite


Q:How is carbon used in the medical field?
Carbon is used in the medical field in various ways. It is commonly used in medical imaging techniques such as positron emission tomography (PET) scans, where radioactive carbon isotopes are used to track the movement and metabolism of substances within the body. Carbon is also utilized in the production of medical implants and devices, including artificial heart valves, pacemakers, and prosthetics. Additionally, carbon-based materials are being researched for drug delivery systems, tissue engineering, and as components of medical sensors and electrodes.
Q:What are the impacts of carbon emissions on ecosystems?
Carbon emissions have significant impacts on ecosystems, and these effects can be seen across various levels of the food chain. One of the major impacts is the alteration of the climate, as carbon emissions contribute to global warming and climate change. This change in temperature and weather patterns can disrupt ecosystems and lead to the loss of biodiversity. Increased carbon emissions also contribute to ocean acidification, which is the absorption of carbon dioxide by seawater, leading to a decrease in pH levels. This can have detrimental effects on marine life, particularly organisms with calcium carbonate shells such as corals, mollusks, and certain plankton species. As the acidity of the oceans increases, it becomes more challenging for these organisms to form and maintain their protective shells, leading to a decline in their populations. Furthermore, carbon emissions can impact the distribution and behavior of species. As temperatures rise, certain habitats become unsuitable for some species, forcing them to migrate or adapt to new conditions. This can disrupt the delicate balance of ecosystems, as some species may struggle to find adequate resources or may face increased competition for limited resources in their new habitats. Another significant impact of carbon emissions on ecosystems is the increased frequency and intensity of extreme weather events such as hurricanes, droughts, and wildfires. These events can lead to habitat destruction, loss of vegetation, and displacement of species, ultimately affecting the overall health and stability of ecosystems. Overall, carbon emissions have profound and far-reaching impacts on ecosystems. It is essential to reduce these emissions and transition to cleaner energy sources to mitigate these effects and protect the delicate balance of our natural world.
Q:What kinds of barbecue carbon do you have?
Common carbon on the market are: flammable carbon, charcoal, carbon three mechanisms. Flammable carbon available in outdoor stores, there are two kinds of square and pie. The surface of flammable carbon has a flammable layer, which is easier to ignite than ordinary charcoal.
Q:How is carbon used in the production of carbon nanomaterials?
Carbon is used as the raw material for the production of carbon nanomaterials. Different forms of carbon, such as graphite or carbon black, are transformed through various processes like chemical vapor deposition or arc discharge to create carbon nanotubes or graphene.
Q:How does carbon impact the pH balance of oceans?
Carbon dioxide (CO2) dissolved in seawater reacts with water molecules to form carbonic acid, which lowers the ocean's pH. This decrease in pH, known as ocean acidification, has detrimental effects on marine life, especially organisms that rely on calcium carbonate to build their shells or skeletons. It disrupts the delicate balance of the marine ecosystem, affecting the growth, reproduction, and survival of various species, ultimately posing a threat to the biodiversity and health of our oceans.
Q:What are fullerenes?
Fullerenes are a unique class of molecules composed entirely of carbon atoms arranged in a spherical or cage-like structure. They were first discovered in 1985 and have since gained significant attention due to their interesting properties and potential applications in various fields. The most well-known and extensively studied fullerene is the buckminsterfullerene, also known as C60, which consists of 60 carbon atoms forming a hollow sphere resembling a soccer ball. Fullerenes can also have different numbers of carbon atoms, such as C70, C84, or even larger clusters. What makes fullerenes remarkable is their exceptional stability and unique structure. The carbon atoms in a fullerene are interconnected through covalent bonds, forming a closed network of hexagons and pentagons. This arrangement gives fullerenes their characteristic shape and provides them with remarkable mechanical, thermal, and chemical stability. Fullerenes possess a wide range of fascinating properties that make them intriguing for scientific research and technological applications. For instance, they exhibit high electrical conductivity and can act as efficient electron acceptors or donors in organic electronic devices. They also have excellent optical properties, such as strong absorption and emission of light, which have led to their use in solar cells and photovoltaic devices. Moreover, fullerenes have shown potential in medical and biological applications. Their unique cage-like structure allows for encapsulation of other molecules within their hollow interior, making them ideal for drug delivery systems. Fullerenes also possess strong antioxidant properties, which make them potential candidates for various therapeutic treatments. In summary, fullerenes are a fascinating class of carbon-based molecules with unique structures and remarkable properties. Their versatility and potential applications in electronics, energy, medicine, and other fields continue to be explored, making them an exciting area of study in modern science.
Q:What are the different types of carbon-based plastics?
Carbon-based plastics come in various types, each possessing distinct characteristics and uses. Among the commonly known variants are: 1. Polyethylene (PE): This plastic, available in high-density polyethylene (HDPE) and low-density polyethylene (LDPE) forms, is widely employed due to its strength, flexibility, and resistance to chemicals. It finds applications in packaging, pipes, and toys. 2. Polypropylene (PP): Renowned for its high melting point, chemical resistance, and durability, PP is a popular choice for automotive parts, appliances, and packaging. 3. Polystyrene (PS): PS, a rigid plastic, frequently features in disposable products like food containers and packaging materials. Its lightweight nature and good insulation properties make it advantageous. 4. Polyvinyl Chloride (PVC): PVC, a versatile plastic that can be flexible or rigid based on its composition, sees wide usage in construction materials, pipes, cables, and vinyl flooring. 5. Polyethylene Terephthalate (PET): PET, a lightweight and sturdy plastic, is commonly employed in beverage bottles, food packaging, and textile fibers. It is renowned for its exceptional resistance to gas and moisture. 6. Polycarbonate (PC): PC, a transparent plastic, stands out for its high resistance to impact and heat. It is often utilized in eyewear, automotive parts, and electronic devices. These examples represent just a fraction of the carbon-based plastics available in the market. Numerous other variations and blends exist, and the choice of plastic depends on factors such as intended application, desired properties, and environmental considerations.
Q:Why is the longer the carbon chain, the better the hydrophobic properties?
I only know that the carbon chain is hydrophobic, so the longer it stronger. But why hydrophobic carbon chain is hydrophobic, hydrocarbon is because of hydrophobic group, the hydrophobic alkyl and why? I don't know, can be very the problem of bai123 (inline station TA) the longer the pure carbon chain, the better the symmetry, the worse the polarity, showing a strong hydrophobic, lqn513 (in station contact TA) similar, compatible ah, polarity is different, compatibility is different, zhu2du1314 (station contact TA), this is obvious......
Q:What are the properties of activated carbon?
Activated carbon, also known as activated charcoal, possesses several unique properties that make it highly versatile and useful in various applications. 1. Adsorption: One of the most significant properties of activated carbon is its high adsorptive capacity. It has a vast internal surface area due to its porous structure, which allows it to effectively adsorb molecules, ions, and impurities from gases, liquids, and solids. This adsorption capability makes it ideal for purification purposes, such as water and air filtration, as well as in the removal of toxins and pollutants from industrial processes. 2. Porosity: Activated carbon has a highly porous structure with a network of interconnected pores. This porosity provides a large surface area, enabling it to trap a significant amount of contaminants. The pores can be classified into three types: micropores (less than 2 nm), mesopores (2-50 nm), and macropores (greater than 50 nm), each contributing to its adsorption capacity. 3. Chemical Stability: Activated carbon exhibits excellent chemical stability, making it resistant to degradation and breakdown when exposed to various chemicals or environments. This property allows it to maintain its adsorption capacity over a long period and under harsh conditions, ensuring its efficiency and longevity in different applications. 4. Selectivity: Activated carbon can be tailored to exhibit selectivity towards specific substances by modifying its surface properties. Through various activation processes, such as physical or chemical treatments, the surface chemistry of activated carbon can be altered to enhance its affinity for certain molecules or contaminants, while reducing its affinity for others. This selectivity makes it an effective material for specific applications, such as removing specific pollutants or capturing desired compounds. 5. Regenerability: Another advantageous property of activated carbon is its regenerability. After reaching its adsorption capacity, it can be regenerated by heating or washing with appropriate solvents, allowing it to be reused multiple times before replacement. This regenerability not only reduces the operational costs but also contributes to its sustainability and eco-friendliness. 6. Low Density: Activated carbon has a relatively low density, making it lightweight and easy to handle. This property enables its use in various systems and devices without adding excessive weight or bulk. 7. Thermal Stability: Activated carbon possesses high thermal stability, allowing it to withstand high temperatures without significant degradation. This property makes it suitable for applications involving high-temperature processes, such as gas purification or catalytic reactions. Overall, the properties of activated carbon, including its adsorption capacity, porosity, chemical stability, selectivity, regenerability, low density, and thermal stability, make it a versatile material widely used in water and air purification, gas separation, chemical processing, pharmaceuticals, and many other industries.
Q:What is carbon?
Carbon is a chemical element that is essential for life on Earth. It is found in all living organisms and is the building block of molecules such as proteins, carbohydrates, and nucleic acids. Carbon exists in various forms, including graphite and diamond, and plays a crucial role in the carbon cycle, regulating Earth's climate and maintaining the delicate balance of ecosystems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products