Carbon Additive FC 92%/ CNBM Carbon Additive

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Product Description

Carbon additive (carbon raiser) with characteristic of low ash and low sulfur is made from calcined petroleum coke, graphite petroleum coke or high quality anthracite coal . As an ideal  recarburizer  and intermediate reactor, it has been widely used in different industries like metallurgy, chemistry, machinery, electricity, etc.

 The selection of a charging carbon is determined by the quality requirements of the steel or ferroalloy production as well as the cost and availability of carbon products. So the recarburizer is mainly used  in the metallurgy to increase the content of carbon. 

Packaging & Delivery

Packaging Details:1. carbon additive in 1 MT jumbo bag 2. carbon additive in 25kg PP bag 3. carbon additive in 50 kg woven bag 4. carbon additive in bags then put them on pallet 5.bulk in container 6.as your requirements
Delivery Detail:within 10 days after receiving 30% deposit or LC



Specification

 

Carbon

Min98%

Ash

Max0.5%

Sulphur

Max0.05%

V.M

Max0.5%

Moisture

Max0.5%

N

Max0.03%

H

Max0.01%

Sizes(mm)

1-5 1-3 3-10 1-10 



 Calcined petroleum coke as carbon additive

Carbon

Min89%

Ash

Max0.3%

Sulphur

Max6%

V.M

Max10%

Moisture

Max8%

N

Max0.03%

H

Max0.01%

Sizes(mm)

1-5 3-8 5-15 10-20



Calcined anthracite coal as carbon additive 

Carbon

Min90-95%

Ash

Max5%

Sulphur

Max0.5%

V.M

Max1.5%

Moisture

Max0.5%

N

Max0.03%

H

Max0.01%

Sizes(mm)

1-5 3-8 1-3




Pictures of Calcined AnthraciteCoal




Q:
Fossil fuels release carbon into the atmosphere through a process called combustion. When fossil fuels such as coal, oil, and natural gas are burned for energy, the carbon that was trapped underground for millions of years is released as carbon dioxide (CO2) gas. During combustion, the carbon and hydrogen atoms in fossil fuels react with oxygen in the air to produce CO2, water vapor (H2O), and heat. The released CO2 is then emitted into the atmosphere as a greenhouse gas. The burning of fossil fuels in various sectors such as transportation, electricity generation, and industrial processes is a significant contributor to the increase in atmospheric CO2 levels. The continuous extraction and burning of these fuels at a rapid rate have resulted in a substantial increase in the concentration of CO2 in the Earth's atmosphere over the past century. This increase in atmospheric CO2 is a major cause of climate change because CO2 acts as a heat-trapping gas, which leads to the greenhouse effect. The greenhouse effect is the process by which the Earth's atmosphere retains the heat radiated from the surface, causing a rise in global temperatures. The release of carbon from fossil fuels into the atmosphere is therefore a major concern due to its role in climate change and the subsequent environmental and societal impacts. To mitigate these effects, there is a growing global effort to shift towards renewable and cleaner sources of energy, reduce fossil fuel consumption, and implement sustainable practices.
Q:
Carbon contributes to the strength of concrete by reinforcing it through the formation of calcium silicate hydrate (C-S-H) gel. This gel fills in the gaps in the concrete matrix, enhancing its density and reducing porosity. Additionally, the carbonaceous material reacts with calcium hydroxide (a byproduct of cement hydration), producing calcium carbonate. The formation of calcium carbonate increases the overall strength and durability of the concrete structure.
Q:Something that seems to be used in the locomotive brake system. I haven't seen it, either. Who knows? It's better for the locomotive system to go back. Thank you!!
The texture of the skateboard is relatively soft, so the main loss in contact with the contact wire is on the slide plate, and the wear of the contact wire is very small.
Q:
Carbon emissions from burning fossil fuels contribute to climate change, which affects the availability of clean transportation. Increased levels of carbon dioxide in the atmosphere trap heat, leading to rising global temperatures and extreme weather events. This, in turn, impacts the infrastructure necessary for clean transportation, such as roads, bridges, and railways. Additionally, carbon-intensive transportation systems, like gasoline-powered vehicles, contribute to air pollution, which further hinders the development and adoption of cleaner transportation alternatives like electric vehicles.
Q:What are the specifications of carbon fiber cloth?
Construction cloth: 200g/3000gPrepreg cloth: 30g, 50g, 75g, 100g, 125g, 150g, 175g, and so on
Q:
Carbon plays a significant role in the formation of smog, particularly in the form of carbon monoxide (CO) and volatile organic compounds (VOCs). When fossil fuels are burned, such as in vehicle engines or power plants, they release carbon monoxide into the atmosphere. Carbon monoxide is a colorless and odorless gas that can react with other pollutants in the presence of sunlight to form ground-level ozone, a key component of smog. Furthermore, carbon-based compounds known as volatile organic compounds (VOCs) are also emitted from various sources, including industrial processes, gasoline vapors, and chemical solvents. These VOCs can undergo chemical reactions in the presence of nitrogen oxides and sunlight to create ground-level ozone as well. Both carbon monoxide and VOCs contribute to the formation of smog by reacting with nitrogen oxides (NOx) in the presence of sunlight. This chemical reaction forms ground-level ozone, which is a primary component of smog. Ozone is harmful to human health and the environment, and its formation is exacerbated by the presence of carbon emissions. Reducing carbon emissions is crucial to mitigating the formation of smog. Transitioning to cleaner and more sustainable sources of energy, such as renewable energy, can help decrease the amount of carbon released into the atmosphere. Additionally, implementing stricter emissions standards for vehicles and industrial processes can also contribute to reducing carbon emissions and consequently limit the formation of smog.
Q:
The carbon cycle is a natural process through which carbon is constantly recycled and exchanged between the atmosphere, land, and ocean. It begins with carbon dioxide (CO2) being absorbed by plants through photosynthesis, converting it into organic compounds. These plants are then consumed by animals, transferring carbon up the food chain. When plants and animals die, their organic matter decomposes, releasing carbon back into the atmosphere as CO2. Additionally, some carbon is stored in the form of fossil fuels, such as coal and oil, which are released through human activities like burning fossil fuels and deforestation. Ultimately, carbon is continually cycled through the environment, balancing the levels of CO2 in the atmosphere and supporting life on Earth.
Q:Carbon fiber refractory?
3, pre oxidized carbon fiber cloth, can withstand 200--300 degrees of high temperature
Q:I want to know why the ATP in the five carbon sugar is a DNA RNA??
ATP (adenosine-triphosphate) Chinese name three phosphate adenosine, also called ATP (adenosine three phosphate), referred to as ATP, which A said adenosine, T said the number is three, P said that the phosphate group, connecting three phosphate groups.
Q:
The environmental impacts of carbon emissions from industries are significant and wide-ranging. Firstly, carbon emissions contribute to the greenhouse effect, which leads to global warming and climate change. The excessive release of carbon dioxide and other greenhouse gases into the atmosphere traps heat, causing the Earth's temperature to rise. This has resulted in the melting of polar ice caps, rising sea levels, and extreme weather events such as hurricanes and droughts. These changes disrupt ecosystems, lead to the loss of biodiversity, and threaten the survival of numerous species. Secondly, carbon emissions contribute to air pollution. Industries release not only carbon dioxide but also other harmful pollutants such as sulfur dioxide, nitrogen oxides, and particulate matter. These pollutants can have detrimental effects on human health, causing respiratory problems, cardiovascular diseases, and even premature death. In addition, they contribute to the formation of smog and acid rain, which further damage ecosystems and harm plant and animal life. Moreover, carbon emissions from industries have a negative impact on water systems. When carbon dioxide dissolves in water, it forms carbonic acid, leading to a decrease in pH levels and making the water more acidic. This acidification harms marine life, particularly organisms with shells or skeletons made of calcium carbonate, such as coral reefs, shellfish, and plankton. The disruption of marine ecosystems can have cascading effects on other species and disrupt the food chain. Lastly, carbon emissions contribute to deforestation and habitat destruction. Industries often rely on fossil fuels for energy, which leads to the clearing of forests to make way for mining or drilling operations. This destruction of natural habitats not only reduces biodiversity but also releases stored carbon from trees into the atmosphere, exacerbating the carbon emissions problem. To mitigate these environmental impacts, industries must prioritize the reduction of carbon emissions. This can be achieved through adopting cleaner and more sustainable energy sources, implementing energy-efficient technologies, and implementing stricter regulations and policies. Transitioning to renewable energy, improving industrial processes, and investing in carbon capture and storage technologies are essential steps towards mitigating the environmental impacts of carbon emissions from industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request