• Solar Inverter 500w - Three Phase 20k Solar Inverter Made in China System 1
  • Solar Inverter 500w - Three Phase 20k Solar Inverter Made in China System 2
  • Solar Inverter 500w - Three Phase 20k Solar Inverter Made in China System 3
Solar Inverter 500w - Three Phase 20k Solar Inverter Made in China

Solar Inverter 500w - Three Phase 20k Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Three Phase 20k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Three Phase 20k Solar Inverter

Including three series,7 models

Both economical and high effciency

Smaller and lighter, 20Kw-TL weighs only 45kg

External Inductor

LCD screen with four buttons

Ethernet wifi or GPRS cascade data communication technology

User, installer, distrbutor, Omnik headquarter all-round remote control

Meets VDE-AR-N4105,BDEW approval

Built-in lightning protection module as an option 

Advantages of Three Phase 20k Solar Inverter

Meets all the needs of medium power three phase inverter

Economy, high reliability and long life circle

Convenient to transport and install

Reducing machine temperature, extends device lifetime

Easy to operate, user friendly

One power station needs only one monitoring equipment

Real-time operation condition accessible, fast fault responding speed

Adjustable active and reactive power

Built-in lighting protection module

 

Technical Data of Three Phase 20k Solar Inverter

 

TypeOmniksol-20k-TL
Input(DC)
Max.PV Power21200W
Max,DC Voltage1000V
Nominal DC Voltage640V
Operating MPPT Voltage Range250-850V
MPPT Voltage Range at Nominal Power480-850V
Start up DC Voltage 300V
Turn off DC Voltage250V
Max, DC Current(A/B)22A/22A
Max, Short Cicuit Current for each MPPT25A/25A
Number of MPP trackers2
Max, Input Power for each MPPT*5000W
Number of DC ConnectionA:3/B:3
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power19200VA
Nominal AC Power (cos phi = 1)19200W
Nominal AC Voltage3/N/PE;220/380V
3/N/PE;230/400V
3/N/PE;240/415V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current29.0A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power60W
Night time Power Consumption<1W
Standby Consumption<12W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency98.2%
Euro Efficiency97.8%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryPV Ⅱ/ Mains Ⅲ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions575x650x248mm
Weight45kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptNatural convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<45dB
Isolation TypeTransformerless
DisplayTFT Graphic Display
Data CommunicationRS485(WiFi, GRPS optional)
Computer CommunicationRS485(USB)
Standard Warranty10 Years (5-15 years optional)

 

IMages of Three Phase 20k Solar Inverter

Three Phase 20k Solar Inverter made in China

Three Phase 20k Solar Inverter made in China

Three Phase 20k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: How does a solar inverter handle power surges or fluctuations?
A solar inverter handles power surges or fluctuations by employing various protective mechanisms. It typically incorporates surge protection devices, such as varistors or metal-oxide varistors (MOVs), to absorb and redirect high voltage spikes caused by power surges. Additionally, inverter designs may include capacitors that help smooth out voltage fluctuations and stabilize the power output. These protective features ensure that the solar inverter can effectively handle power surges or fluctuations, safeguarding the system's integrity and preventing any damage to connected devices.
Q: How do you choose the right voltage rating for a solar inverter?
When choosing the right voltage rating for a solar inverter, it is important to consider a few factors. Firstly, you should check the voltage rating of your solar panels to ensure compatibility with the inverter. Secondly, consider your system's voltage requirements, including the voltage of your battery bank or grid connection. Lastly, take into account the distance between your inverter and the solar panels, as voltage drop can occur over long distances. By considering these factors, you can select a solar inverter with the appropriate voltage rating for optimal performance and efficiency.
Q: Why is a solar inverter necessary in a solar power system?
A solar inverter is necessary in a solar power system because it converts the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power household appliances and be fed back into the grid. Without a solar inverter, the DC power generated by solar panels would be incompatible with the electrical grid and unable to be utilized effectively.
Q: How does a solar inverter handle power factor correction?
A solar inverter handles power factor correction by using advanced control algorithms and circuitry to actively manage and adjust the power factor of the electrical output. It does this by continuously monitoring the load and adjusting the phase angle and voltage to ensure that the power factor remains close to unity (1.0). This helps optimize the efficiency of the solar system and ensures that the power being generated is in sync with the grid requirements.
Q: Can a solar inverter be used in a hybrid solar system?
Yes, a solar inverter can be used in a hybrid solar system. A hybrid solar system combines both solar power and another source of energy, such as a battery or grid power. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power that can be used in the home or fed back to the grid. In a hybrid solar system, the solar inverter would still perform this function, allowing the system to utilize both solar and other energy sources efficiently.
Q: Can a solar inverter be used with a solar-powered vehicle?
Yes, a solar inverter can be used with a solar-powered vehicle. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various devices. In a solar-powered vehicle, the solar panels generate DC electricity, which can be connected to a solar inverter to convert it into AC power that can be used to charge the vehicle's battery or directly power electric components.
Q: How does a solar inverter interact with a battery storage system?
A solar inverter interacts with a battery storage system by converting the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power homes and businesses. It also manages the flow of electricity between the solar panels, the battery storage system, and the electrical grid. When the solar panels produce more electricity than is being used, the excess energy is stored in the battery system for later use. Conversely, when the solar panels do not generate enough electricity to meet the demand, the inverter draws power from the battery storage system to supplement the shortfall. This interaction ensures a continuous and reliable power supply from solar energy, even during periods of low sunlight or high energy demands.
Q: How does a solar inverter handle electromagnetic interference?
A solar inverter handles electromagnetic interference (EMI) by incorporating various measures to reduce and mitigate its impact. These measures include using shielding materials, implementing proper grounding techniques, and utilizing filters to suppress EMI. Additionally, advanced inverters may employ digital signal processing techniques to minimize the effects of EMI on the solar power system.
Q: How does a solar inverter handle voltage rise in case of low load conditions?
A solar inverter handles voltage rise in case of low load conditions by reducing the power output from the solar panels. It does this by adjusting the voltage and frequency of the electricity generated, ensuring that the voltage remains within the acceptable range. This prevents any damage to the inverter or connected devices and ensures the efficient operation of the solar system.
Q: What is the maximum AC power output of a solar inverter?
The maximum AC power output of a solar inverter depends on its size and capacity. Generally, residential solar inverters have a maximum AC power output ranging from 1 kilowatt (kW) to 10 kW, while larger commercial or utility-scale inverters can have outputs exceeding 1 megawatt (MW).

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords