• Photovoltaic Grid-Connected Inverter SG2K5TL-S System 1
  • Photovoltaic Grid-Connected Inverter SG2K5TL-S System 2
Photovoltaic Grid-Connected Inverter SG2K5TL-S

Photovoltaic Grid-Connected Inverter SG2K5TL-S

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
500000 unit
Supply Capability:
3000000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG2K5TL-S Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

 It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have

 special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, Africa and Europe. Available for hand installation, no need for lifting machinery

 assistance.

 

2. Main Features of the Photovoltaic Grid-Connected Inverter SG2K5TL-S

• Max. input voltage 600V, compatible with different PV panel and string design

• Only 9kg, easy for handling and installation

• Max. Efficiency at 98.0%

 

• Ultra-quiet, suitable for residential use

• Access to home WiFi system, easy to enjoy the online monitoring

• Wireless communication design, intelligent mobile phone local and remote monitoring

 

• Product certification: TÜV, CE, AS4777, AS/NZS 3100, VDE AR N 4105

• Manufacturer certification: ISO 9001, ISO 14001, OHSAS 18000

 

 

3. Photovoltaic Grid-Connected Inverter SG2K5TL-S Images

 

 

 

4. Photovoltaic Grid-Connected Inverter SG2K5TL-S Specification

Input Side Data

 

Max. PV input power

2800W

Max. PV input voltage

600V

Startup voltage

150V

Nominal input voltage

345V

MPP voltage range

125~560V

MPP voltage range for nominal power

240~520V

No. of MPPTs

1

Max. number of PV strings per MPPT

1

Max. PV input current

11A

Max. current for input connector

20A 

Output Side Data

Nominal AC output power

2490W

Max AC output powerPF=1

2490W

Max. AC output apparent power

2490VA

Max. AC output current

11.5A

Nominal AC voltage

230Vac (Single phase)

AC voltage range

180~276Vac (May vary as per corresponding country’s grid standard)

Nominal grid frequency

50Hz/60Hz

Grid frequency range

4555Hz/5565Hz (May vary as per corresponding country’s grid standard)

THD

< 3 % (Nominal power)

DC current injection

<0.5 %In

Power factor

>0.99@default value at nominal power, (adj. 0.8 overexited~0.8 underexcited)

Protection

 

Anti-islanding protection

YES

LVRT

NO

DC reverse connection protection

YES

AC short circuit protection

YES

Leakage current protection

YES

DC switch

Optional

DC fuse

NO

Overvoltage protection

Varistors 

System Data

Max. efficiency

98.00%

Max. European efficiency

97.40%

Isolation method

Transformerless

Ingress protection rating

IP65

Night power consumption

<1W

Operating ambient temperature range

-25~60 (>45 derating)

Allowable relative humidity range

0~100%

Cooling method

Natural cooling

Max. operating altitude

4000m (2000m derating) 

Display

LED, LCD(optional)

Communication

WiFi (optional)

DC connection type

MC4

AC connection type

Plug and play connector

Certification

IEC61000-6-2,IEC61000-6-3,

AS/NZS3100,AS4777.2,AS4777.3

VDE-AR-N-4105, VDE0126-1-1,CE,G83/2C10/11,EN50438,CGC

Mechanical Data

DimensionsW×H×D

300*370*125 mm

Mounting method

Wall bracket

Weight

9kg

 

 

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG2K5TL-S

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q:What are the potential risks of overheating a solar inverter?
The potential risks of overheating a solar inverter include reduced efficiency and performance, increased wear and tear on components, shortened lifespan of the inverter, potential damage to internal circuitry, and even the risk of fire.
Q:Can a solar inverter be used in mobile applications?
Yes, a solar inverter can be used in mobile applications. There are specifically designed solar inverters available that are compact and portable, making them suitable for use in mobile applications such as RVs, boats, and other vehicles. These inverters can convert the DC power generated by solar panels into AC power to run various devices and appliances on the go.
Q:Can a solar inverter be used with a backup power supply (UPS)?
Yes, a solar inverter can be used with a backup power supply (UPS). The solar inverter can convert the direct current (DC) power generated by the solar panels into alternating current (AC) power, which can then be used to charge the backup power supply. This allows for a continuous power supply even when the solar panels are not generating electricity, ensuring uninterrupted power during power outages or when solar energy is insufficient.
Q:How do you calculate the payback period for a solar inverter?
To calculate the payback period for a solar inverter, you need to divide the initial cost of the inverter by the annual savings it generates. The payback period is the amount of time it takes for the cumulative savings to equal the initial cost.
Q:How does a solar inverter affect the overall system performance in different weather conditions?
A solar inverter plays a crucial role in determining the overall system performance in different weather conditions. In situations with ample sunlight, a high-quality inverter optimizes the conversion of DC power generated by the solar panels into usable AC power. This ensures maximum energy output and efficient utilization of solar energy. However, in adverse weather conditions like cloudy or overcast skies, a good inverter can still extract a significant amount of power by employing advanced MPPT algorithms and voltage regulation techniques. It helps maintain system stability and mitigates power losses, thereby minimizing the impact of weather conditions on the overall system performance.
Q:What is the maximum number of MPPT inputs in a solar inverter?
The maximum number of MPPT (Maximum Power Point Tracking) inputs in a solar inverter can vary depending on the specific model and brand. However, some larger and more advanced solar inverters can have up to 12 or more MPPT inputs, allowing for greater flexibility and optimization in harnessing solar power from multiple arrays or orientations.
Q:How does a solar inverter handle harmonic distortion?
A solar inverter handles harmonic distortion by using filters and control algorithms to reduce or eliminate the harmonics generated by the solar panels. These filters and algorithms help ensure that the electricity generated by the solar panels is clean and does not introduce any unwanted harmonics into the electrical grid.
Q:What is the difference between a grid-tied and off-grid solar inverter?
A grid-tied solar inverter is designed to work with the traditional utility grid. It converts the DC power generated by solar panels into AC power that can be used in the home or business, and any excess power can be fed back into the grid. In contrast, an off-grid solar inverter is used in standalone systems, where there is no connection to the utility grid. It converts the DC power generated by solar panels into AC power for immediate use or for storage in batteries, ensuring a reliable power supply in isolated areas or during power outages.
Q:Can a solar inverter provide power during a blackout?
No, a solar inverter cannot provide power during a blackout. This is because solar inverters are designed to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity for use in homes or businesses. However, during a blackout, the solar panels cannot generate electricity since the grid connection is lost, and therefore the solar inverter cannot provide power.
Q:What is the power factor correction capability of a solar inverter?
The power factor correction capability of a solar inverter refers to its ability to correct any power factor issues in the electrical system it is connected to. A solar inverter typically aims to achieve a power factor as close to 1 as possible, which indicates a balanced and efficient use of electrical power. By actively monitoring and adjusting the power factor, a solar inverter ensures that the energy generated from the solar panels is effectively utilized and does not cause any unnecessary strain on the electrical grid.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords