• 600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C System 1
  • 600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C System 2
  • 600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C System 3
  • 600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C System 4
  • 600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C System 5
  • 600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C System 6
600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C

600 Watt Solar Inverter DC1500V Central Inverter GSM3125C/GSM3400C/GSM2500C/GSM3000C

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 pc
Supply Capability:
15000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
3125KW/3400KW/2500KW/3000KW
Inveter Efficiency:
98.7%-99%
Output Voltage(V):
630
Input Voltage(V):
1500
Output Current(A):
2864A/3116A/2624A/2886A
Output Frequency:
50/60Hz

Product Description:

Max. PV voltage up to 1500V Max. 28 DC inputs

Dustproof protection Modular design for  Easy maintenance

Max. DC/AC ratio up to 1.5 Full power output under 50℃

AGC/AVC  Night SVG function LVRT/HVRT/FRT function

Technical Specifications:



FAQ:

Q:How the output voltage of the PV inverter and the grid-connected voltage are determined

Inverter is the DC power (battery, battery) into alternating current (usually 220V, 50Hz sine wave). It consists of inverter bridge, control logic and filter circuit. Widely used in air conditioning, home theater, electric wheel, power tools, sewing machines, DVD, VCD, computer, TV, washing machine, range hood, refrigerator, video recorders, massage, fan, lighting and so on. In foreign countries

Q:Installation and maintenance of photovoltaic grid - connected inverter

only when the local power sector permission by the professional and technical personnel to complete all the electrical connection before the inverter can be connected.

Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?

Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.

Q:After the PV inverter, how to achieve the same period before the network?

Solar panel simulator: with MPPT function, simulated morning, noon, afternoon, evening, rainy weather, solar panels produced under different conditions in different voltages.

Q:Is the PV inverter a current source or a voltage source?

According to the waveform modulation method can be divided into square wave inverter, stepped wave inverter, sine wave inverter and modular three-phase inverter.

Q:Photovoltaic grid-connected inverter without DC emc how will happen

Solar photovoltaic power generation technology is the use of solar cells, the photovoltaic effect of semiconductor materials, solar radiation can be directly converted into a new type of power generation system, solar energy is a radiant energy, solar power means --- to direct conversion of sunlight Into electricity,

Q:What is the difference between low voltage grid connection and medium voltage grid connection?

For photovoltaic power plants when the power system accidents or disturbances caused by photovoltaic power plant grid voltage drop, in a certain voltage drop range and time interval, the photovoltaic power plant can ensure that non-off-line continuous operation.

Q:Is the grid side of the grid and the inverter?

The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.

Q:PV grid-connected inverter and independent inverter in the control of what is the difference

The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.


Product Images:





Production Process Photos:




Q:What is the role of a voltage control unit in a solar inverter?
The role of a voltage control unit in a solar inverter is to regulate and maintain a consistent output voltage from the solar panels. It ensures that the electricity generated by the panels is converted and supplied at the appropriate voltage levels to meet the requirements of the connected devices or the grid. By controlling the voltage, it helps optimize the efficiency and reliability of the solar inverter system.
Q:Can a solar inverter be used in a solar water pumping system?
Yes, a solar inverter can be used in a solar water pumping system. The inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) required to power the water pump. This allows for efficient and reliable operation of the pumping system using solar energy.
Q:Can a solar inverter be used in conjunction with a power factor correction device?
Yes, a solar inverter can be used in conjunction with a power factor correction device. The power factor correction device helps to improve the power factor of the electrical system, ensuring efficient and reliable operation. By installing a power factor correction device in combination with a solar inverter, the overall power quality can be enhanced, leading to optimized energy utilization and reduced electricity costs.
Q:Can a solar inverter be used with solar-powered data centers?
Yes, a solar inverter can be used with solar-powered data centers. In fact, solar inverters are essential components in solar power systems as they convert the direct current (DC) generated by the solar panels into alternating current (AC) which is then used to power the data center's equipment. The solar inverter ensures efficient and reliable utilization of solar energy in data centers.
Q:How do you calculate the power loss in a solar inverter?
To calculate the power loss in a solar inverter, you need to determine the difference between the input power and the output power. Subtracting the output power from the input power will give you the power loss.
Q:How does a solar inverter handle frequency variations?
A solar inverter handles frequency variations by continuously monitoring the grid frequency and adjusting its own output accordingly. It uses advanced control algorithms to maintain a stable output frequency, ensuring the smooth and synchronized integration of solar power into the grid.
Q:Can a solar inverter be used in a multi-string configuration?
Yes, a solar inverter can be used in a multi-string configuration. In fact, many modern solar inverters are designed to handle multiple strings of solar panels. This configuration allows for more flexibility in system design and improves overall performance and efficiency of the solar power system.
Q:What is the maximum DC input voltage for a solar inverter?
The maximum DC input voltage for a solar inverter typically depends on the specific model and manufacturer. However, in general, most solar inverters have a maximum DC input voltage ranging from 600 to 1000 volts.
Q:What are the key factors affecting the installation process of a solar inverter?
There are several key factors that can affect the installation process of a solar inverter. Some of these factors include the location and orientation of the solar panels, the distance between the panels and the inverter, the type and capacity of the inverter, the wiring and electrical connections, and the availability of appropriate mounting structures. Additionally, factors such as local regulations, building codes, and safety considerations also play a crucial role in the installation process of a solar inverter.
Q:How does a solar inverter handle voltage fluctuations in the grid?
A solar inverter handles voltage fluctuations in the grid by constantly monitoring the grid voltage and adjusting its own output voltage accordingly. When the grid voltage drops, the inverter increases its output voltage to compensate, and conversely, when the grid voltage rises, the inverter decreases its output voltage. This helps to stabilize the voltage and ensure that the solar system remains connected and operational even during fluctuations in the grid.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords