• 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter System 1
  • 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter System 2
  • 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter System 3
30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter

30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
30 unit
Supply Capability:
500 unit/month

Add to My Favorites

Follow us:

OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


Output Power:
Inveter Efficiency:
Output Voltage(V):
Input Voltage(V):
Output Current(A):
Output Frequency:

CNBM 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter PV Solution

XG30kW-40kW Three Phase On-Grid Solar Inverter






Max. Input Power

48 kW

52.8 kW

57.6 kW

64 kW

Max. Input Voltage


Start Voltage


Rated Input Voltage


Full-load MPP Voltage Range


MPPT Voltage Range


Number of MPP Trackers



String per MPPT


Max.Current per MPPT


Max.Short Circuit Current per MPPT



Max. Output Current

48.3 A

53 A

57.8 A

64.3 A

Rated Output Power

30 kW

33 kW

36 kW

40 kW

Max. Output Power

33.3 kVA

36.6 kVA

39.6 kVA

44 kVA

Rated Grid Frequency

50 Hz / 60 Hz

Rated Grid Voltage

230Vac / 400Vac, 3L / N / PE

Power Factor

>0.99 (0.8 leading~0.8 lagging)


<3% (Rated Power)


Max. Efficiency


European Efficiency


MPPT Efficiency



DC reverse polarity protection


Anti-Islanding protection


AC short circuit protection


Residual current monitoring unit


Insulation resistance monitoring


Ground fault monitoring


Grid monitoring


PV string monitoring


Surge protection

Type II

AFCI protection




LED / LCD / WiFi+App



OptionalWiFi / GPRS / Ethernet

Standard Compliance

Grid Connection Standards

IEC 61727, IEC 62116, IEC 60068, IEC 61683, VDE-AR-N 4110:2018, VDE-AR-N 4105:2018,

VDE-AR-N 4120:2018, EN 50549, AS/NZS 4777.2:2020, CEI 0-21, VDE0126-1-1/A1 VFR 2014,UTE C15-712-1:2013,

 DEWA DRRG, NRS 097-2-1, MEA/PEA, C10/11, G98/G99


IEC 62109-1:2010, IEC 62109-2:2011, EN 61000-6-2:2005, EN 61000-6-3:2007/A1:2011

General Data

Dimensions (W*H*D)

600 x 430 x 230 mm


30 kg

32 kg

Operating Temperature Range

-30° C ~ +60° C

Cooling Method

Smart Cooling

Protection Degree


Max. Operating Altitude

4000 m

Relative Humidity

0 ~ 100%



Night Power Consumption

< 1 W


CNBM global sales team provides customers with professional and efficient pre-sale,

in sale and after-sale services, and enhances the added value of the brand with high-quality services.


Products Details:           

High voltage protection            Over load protection   

Battery reverse connected protection    Dust-proof

Low voltage protection            Overheating protection

Output short-circuit protection           Insect prevention


Q:How does a solar inverter protect against short circuits?
A solar inverter protects against short circuits by incorporating protective devices such as fuses or circuit breakers in its design. These protective devices are designed to detect high current flow caused by a short circuit and quickly interrupt the circuit, preventing any damage or overheating that could occur. Additionally, advanced solar inverters may also include built-in monitoring systems that constantly monitor the electrical parameters and shut down the inverter in case of a short circuit to ensure safety and prevent further damage.
Q:How does the maximum AC current rating affect the performance of a solar inverter?
The maximum AC current rating of a solar inverter determines its capacity to handle and convert the DC power generated by solar panels into usable AC power for the electrical grid. A higher maximum AC current rating allows the inverter to handle larger amounts of power, enabling it to support more solar panels or higher power output. This ensures efficient and uninterrupted performance of the solar inverter, allowing it to meet the energy demands of the system and maximize solar energy production.
Q:What are the advantages of using a three-phase solar inverter?
There are several advantages to using a three-phase solar inverter. Firstly, three-phase solar inverters allow for higher power output compared to single-phase inverters. This is because they distribute the power across three phases, resulting in increased efficiency and capacity. Additionally, three-phase inverters provide better voltage stability and balance across the three phases of a power grid. This is particularly beneficial in commercial or industrial settings where there may be heavy loads and varying power demands. Furthermore, three-phase solar inverters offer improved reliability and durability. They are designed to handle higher currents and can withstand higher temperatures, ensuring a longer lifespan and reducing maintenance requirements. Lastly, three-phase inverters are more cost-effective in large-scale solar installations. They allow for better utilization of available grid infrastructure, reducing transmission losses and optimizing power distribution. Overall, the advantages of using a three-phase solar inverter include higher power output, improved voltage stability, enhanced reliability, and cost-effectiveness in larger-scale installations.
Q:How do you choose the right voltage rating for a solar inverter?
When choosing the right voltage rating for a solar inverter, it is important to consider a few factors. First, you need to determine the voltage of your solar panel array. This will help you match the inverter's voltage rating to ensure compatibility. Additionally, you should consider the voltage requirements of your electrical grid or any appliances you plan to power. The inverter's voltage rating should align with these requirements to ensure efficient energy conversion and safe operation. It is advisable to consult with a professional or an electrical engineer to help you select the appropriate voltage rating for your solar inverter based on your specific needs and system setup.
Q:What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to adjust the power factor of the solar power system to ensure efficient energy conversion. It helps in balancing the reactive power and real power, leading to improved overall power quality and reduced system losses.
Q:Are there any electromagnetic interference concerns associated with solar inverters?
Solar inverters come with electromagnetic interference (EMI) concerns. They convert the direct current (DC) produced by solar panels into alternating current (AC) for powering homes and businesses. This conversion process involves high frequency switching, which can generate EMI. EMI refers to the disturbance caused by electromagnetic radiation emitted by electronic devices. It can interfere with the proper functioning of nearby electronic devices. In the case of solar inverters, the EMI generated can potentially impact radios, televisions, and communication systems. To address these concerns, solar inverter manufacturers typically comply with relevant EMI standards and regulations. This may involve limiting the amount of electromagnetic radiation emitted by the inverters and using shielding materials to reduce EMI. Some inverters also incorporate filters or other techniques to suppress EMI and minimize interference. When selecting and positioning solar inverters, solar installers and system designers should consider EMI concerns. Proper installation and grounding techniques can help decrease EMI issues. It is also important to follow local regulations and guidelines to ensure compliance with EMI standards and minimize potential interference with other electronic devices. Overall, although EMI concerns exist with solar inverters, proper design, installation, and adherence to relevant standards can effectively mitigate these concerns. This ensures the smooth operation of both the solar system and other electronic equipment in the area.
Q:What is the role of an anti-islanding function in a solar inverter?
The role of an anti-islanding function in a solar inverter is to ensure the safety of electrical grid workers by preventing the solar inverter from continuing to generate and supply power to the grid during a power outage. This function is crucial as it helps avoid the risk of injury or damage to utility workers who may be repairing or working on the grid. By detecting the loss of grid power, the anti-islanding function quickly disconnects the solar inverter from the grid, preventing any power feedback and ensuring that the grid remains stable and isolated.
Q:How does a solar inverter handle voltage flicker in the grid?
A solar inverter handles voltage flicker in the grid by continuously monitoring the grid voltage. When it detects a flicker, it adjusts its output power accordingly to stabilize the voltage and maintain a consistent power supply to the connected loads. This helps prevent disruptions and ensures a smooth operation of the grid.
Q:How does a solar inverter communicate with monitoring systems?
A solar inverter communicates with monitoring systems using various communication protocols such as Wi-Fi, Ethernet, cellular networks, or powerline communication. These protocols allow the inverter to transmit data such as energy production, system health, and performance metrics to the monitoring systems. This communication enables real-time monitoring, fault detection, and remote management of the solar system.
Q:How does a solar inverter convert DC to AC power?
A solar inverter converts direct current (DC) power generated by solar panels into alternating current (AC) power that can be used in households and businesses. It does this through a two-step process. Firstly, the DC power from the solar panels is converted into a high-frequency AC power using power electronic switches, usually in the form of transistors. This high-frequency AC power is then transformed into a stable AC power with the desired voltage and frequency using transformers and filters. Overall, the solar inverter ensures that the DC power generated by the solar panels is converted into a usable AC power that can be fed into the electrical grid or consumed directly.

1. Manufacturer Overview

Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products

Hot Searches

Related keywords