• 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter System 1
  • 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter System 2
  • 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter System 3
30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter

30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
30 unit
Supply Capability:
500 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
30-40kW
Inveter Efficiency:
98.8%
Output Voltage(V):
230V/400V
Input Voltage(V):
1100V
Output Current(A):
48.3A-64.3A
Output Frequency:
50HZ/60HZ

CNBM 30kW 33kW 36kW 40kW Three Phase On-Grid Solar Inverter PV Solution

XG30kW-40kW Three Phase On-Grid Solar Inverter



XG30KTR

XG33KTR

XG36KTR

XG40KTR

Input(DC)





Max. Input Power

48 kW

52.8 kW

57.6 kW

64 kW

Max. Input Voltage

1100V

Start Voltage

250V

Rated Input Voltage

600V

Full-load MPP Voltage Range

500V-800V

MPPT Voltage Range

200V-1000V

Number of MPP Trackers

3

4

String per MPPT

2

Max.Current per MPPT

26A

Max.Short Circuit Current per MPPT

32A

Output(AC)





Max. Output Current

48.3 A

53 A

57.8 A

64.3 A

Rated Output Power

30 kW

33 kW

36 kW

40 kW

Max. Output Power

33.3 kVA

36.6 kVA

39.6 kVA

44 kVA

Rated Grid Frequency

50 Hz / 60 Hz

Rated Grid Voltage

230Vac / 400Vac, 3L / N / PE

Power Factor

>0.99 (0.8 leading~0.8 lagging)

THDi

<3% (Rated Power)

Efficiency





Max. Efficiency

98.60%

European Efficiency

98.50%

MPPT Efficiency

99.90%

Protection





DC reverse polarity protection

Yes

Anti-Islanding protection

Yes

AC short circuit protection

Yes

Residual current monitoring unit

Yes

Insulation resistance monitoring

Yes

Ground fault monitoring

Yes

Grid monitoring

Yes

PV string monitoring

Yes

Surge protection

Type II

AFCI protection

Optional

Communication





Display

LED / LCD / WiFi+App

Communication

StandardRS485

OptionalWiFi / GPRS / Ethernet

Standard Compliance





Grid Connection Standards

IEC 61727, IEC 62116, IEC 60068, IEC 61683, VDE-AR-N 4110:2018, VDE-AR-N 4105:2018,

VDE-AR-N 4120:2018, EN 50549, AS/NZS 4777.2:2020, CEI 0-21, VDE0126-1-1/A1 VFR 2014,UTE C15-712-1:2013,

 DEWA DRRG, NRS 097-2-1, MEA/PEA, C10/11, G98/G99

Safety/EMC

IEC 62109-1:2010, IEC 62109-2:2011, EN 61000-6-2:2005, EN 61000-6-3:2007/A1:2011

General Data





Dimensions (W*H*D)

600 x 430 x 230 mm

Weight

30 kg

32 kg

Operating Temperature Range

-30° C ~ +60° C

Cooling Method

Smart Cooling

Protection Degree

IP66

Max. Operating Altitude

4000 m

Relative Humidity

0 ~ 100%

Topology

Transformerless

Night Power Consumption

< 1 W


 MARKETING & SERVICE NETWORK

CNBM global sales team provides customers with professional and efficient pre-sale,

in sale and after-sale services, and enhances the added value of the brand with high-quality services.

  

Products Details:           

High voltage protection            Over load protection   

Battery reverse connected protection    Dust-proof

Low voltage protection            Overheating protection

Output short-circuit protection           Insect prevention

 

Q: Can a solar inverter be connected to a battery storage system?
Yes, a solar inverter can be connected to a battery storage system. This allows excess solar energy generated during the day to be stored in the batteries and used later when there is no sunlight, providing a reliable source of power.
Q: Can a solar inverter be upgraded or expanded?
Yes, a solar inverter can be upgraded or expanded. Upgrades may involve adding new features or improving the efficiency of the existing inverter. Expansion typically refers to increasing the capacity of the inverter to accommodate additional solar panels. However, the extent to which an inverter can be upgraded or expanded varies depending on the specific model and manufacturer.
Q: Can a solar inverter be controlled remotely?
Indeed, remote control of a solar inverter is possible. Numerous contemporary solar inverters are furnished with integrated communication capabilities like Wi-Fi or Ethernet connectivity, granting the ability to monitor and control them from a distance. Users can access and manage their solar inverters from any location with an internet connection through a web-based interface or a dedicated mobile app. The remote control features typically encompass performance monitoring, settings adjustment, and issue troubleshooting. This remote control functionality provides solar system owners with convenience and flexibility, empowering them to maximize energy production and efficiently manage their systems.
Q: Can a solar inverter be used in areas with high dust and dirt accumulation?
Yes, it is possible to use a solar inverter in areas where there is a high accumulation of dust and dirt. However, it is important to take specific precautions and maintenance measures to guarantee its proper operation. Over time, dust and dirt can build up on the surface of the solar panels, causing a decrease in their efficiency. This can also have an impact on the performance of the solar inverter, as it relies on the energy produced by the solar panels. To minimize the impact of dust and dirt, it is essential to regularly clean the solar panels. This can be accomplished by using a gentle brush or sponge along with a mild detergent mixed with water. It is important to avoid using abrasive materials or applying excessive water pressure, as this may cause damage to the panels. Additionally, installing the solar panels at an angle and orienting them towards the sun can aid in reducing the accumulation of dust and dirt. Furthermore, some solar inverters are designed with built-in protection against dust and dirt. These inverters typically have IP65 or higher ratings, which indicates that they are dust-resistant and capable of withstanding water jets. Opting for such inverters can provide an extra layer of protection against the negative effects of dust and dirt accumulation. Overall, while it is possible to use a solar inverter in areas with high dust and dirt accumulation, regular maintenance and proper cleaning of the solar panels are crucial to ensure optimal performance and longevity of the system.
Q: How does a grid-tied solar inverter work?
A grid-tied solar inverter works by converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power homes or businesses. It synchronizes the AC electricity it generates with the electrical grid, allowing excess electricity to be sent back to the grid for credits or future use. This inverter also monitors the grid's voltage and frequency to ensure the solar system operates safely and efficiently.
Q: How does a solar inverter handle variations in solar panel tilt and orientation?
A solar inverter handles variations in solar panel tilt and orientation by adjusting the power output to maximize the energy harvest. It continuously monitors the performance of the solar panels and adjusts the voltage and current levels to optimize the conversion of sunlight into usable electricity. This allows the inverter to accommodate changes in tilt and orientation, ensuring the system operates at its highest efficiency regardless of the panel position.
Q: Can a solar inverter be used with a smart home system?
Yes, a solar inverter can be used with a smart home system. In fact, integrating a solar inverter with a smart home system allows for better monitoring, control, and optimization of the solar energy production and consumption in the home. This integration enables homeowners to track their energy usage, maximize self-consumption, and even automate certain appliances or systems based on the availability of solar power.
Q: How does a solar inverter handle voltage and frequency regulation?
A solar inverter handles voltage and frequency regulation by converting the direct current (DC) generated by solar panels into alternating current (AC) that matches the utility grid's voltage and frequency. It achieves voltage regulation by constantly monitoring the grid voltage and adjusting the inverter's power output accordingly. Frequency regulation is achieved by synchronizing the inverter's output frequency with the grid frequency, ensuring a stable and consistent power supply.
Q: How does a solar inverter handle electromagnetic interference?
A solar inverter handles electromagnetic interference by incorporating various filtering techniques and components to minimize the impact of electromagnetic interference on its operation. This includes using electromagnetic compatibility (EMC) filters, shielding, and proper grounding techniques. These measures help to reduce electromagnetic emissions from the inverter and also protect it from external electromagnetic disturbances, ensuring reliable and efficient operation.
Q: How does a solar inverter affect the value of a property?
A solar inverter can positively affect the value of a property by making it more attractive to potential buyers. It increases the property's energy efficiency and reduces electricity costs, which can be a significant factor for buyers looking for sustainable and cost-effective homes. Additionally, having a solar inverter installed demonstrates the property's commitment to renewable energy, which can be appealing to environmentally-conscious buyers.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords