• on grid solar inverter Omniksol-3.0k-TL System 1
  • on grid solar inverter Omniksol-3.0k-TL System 2
  • on grid solar inverter Omniksol-3.0k-TL System 3
on grid solar inverter Omniksol-3.0k-TL

on grid solar inverter Omniksol-3.0k-TL

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Omnik new energy solar inverter

Omniksol-2.0k-TL Photon Efficiency up to 3kW
in the world------ Photon tested Jan. 2012.

Omniksol-3k-TL

Futures

Transformerless design, high efficiency (Max.97.6%,Euro. 97.0%)

Multi MPPT channels

High MPP tracking accuracy(>99.9%)

Wide DC input range(120-590 Vdc), compatible with different

module technologies

Easy wiring, installating and operating

IP 65 design, suitable for indoor and outdoor installation

5 years warranty(10~25 years as option)

technical data:

Type

Omniksol-3.0k-TL

Omniksol-4.0k-TL

Omniksol-5.0k-TL

Max. PV-Generator Power [W]

3400

4500

5000

Max. DC voltage [V]

590

590

590

MPPT DC voltage Range [V]

150-500

150-500

150-500

Turn off DC voltage [V]

120

120

120

Max. DC Current [A]

36

36

36

Nominal DC Current [A]

28

33

33

Number of DC Connection

2

2

2

DC-Connection

MC4

MC4

MC4

Number of MPP trackers Turn on Power [W]

2

2

2

Turn on power(W)

10

10

10

Q:What is the maximum number of parallel inverters that can be connected?
The maximum number of parallel inverters that can be connected depends on various factors such as the power rating, capacity, and design of the inverters, as well as the electrical system they are being connected to. It is best to consult the manufacturer's specifications and guidelines to determine the maximum number of parallel inverters that can be safely connected.
Q:Can a solar inverter be used in regions with high levels of air pollution?
Yes, a solar inverter can be used in regions with high levels of air pollution. Air pollution does not directly impact the functioning of a solar inverter. However, it is important to regularly clean and maintain the solar panels to ensure optimal performance, as air pollution can accumulate on the surface of the panels and reduce their efficiency.
Q:How does a solar inverter handle power quality disturbances?
A solar inverter handles power quality disturbances by monitoring the incoming power from the solar panels and adjusting its output accordingly. It uses various control mechanisms to regulate voltage and frequency, ensuring that the power generated by the solar panels is synchronized with the grid. This helps in maintaining a stable and high-quality power supply, minimizing the impact of disturbances such as voltage fluctuations or frequency variations. Additionally, some advanced solar inverters also offer features like grid support functions and reactive power compensation to further enhance power quality.
Q:Can a solar inverter be used with different types of backup power sources?
Yes, a solar inverter can be used with different types of backup power sources such as batteries, generators, or the utility grid. The inverter's role is to convert the DC power generated by solar panels into AC power that can be used by household appliances or fed back into the grid. It can seamlessly switch between different power sources, ensuring uninterrupted power supply and maximizing the utilization of renewable energy.
Q:What is the role of a surge protector in a solar inverter?
The role of a surge protector in a solar inverter is to protect the inverter and other connected devices from power surges or voltage spikes that can occur in the electrical system. It helps to regulate and stabilize the incoming electricity, preventing damage to the inverter and ensuring the smooth and efficient operation of the solar power system.
Q:What is the role of a solar inverter in protecting the electrical grid?
The role of a solar inverter in protecting the electrical grid is to ensure the safe and efficient integration of solar power into the grid. It converts the direct current (DC) produced by solar panels into alternating current (AC) that is compatible with the grid. Additionally, solar inverters monitor and regulate the flow of electricity, providing grid stability by managing voltage and frequency fluctuations. They also incorporate safety mechanisms to disconnect from the grid in case of emergencies or grid disturbances, protecting both the solar system and the overall electrical grid.
Q:How does a solar inverter affect the overall system performance in different weather conditions?
A solar inverter plays a crucial role in determining the overall system performance in different weather conditions. In situations with ample sunlight, a high-quality inverter optimizes the conversion of DC power generated by the solar panels into usable AC power. This ensures maximum energy output and efficient utilization of solar energy. However, in adverse weather conditions like cloudy or overcast skies, a good inverter can still extract a significant amount of power by employing advanced MPPT algorithms and voltage regulation techniques. It helps maintain system stability and mitigates power losses, thereby minimizing the impact of weather conditions on the overall system performance.
Q:How does a solar inverter monitor and optimize energy production?
A solar inverter monitors and optimizes energy production by converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power household appliances or fed back into the grid. It constantly tracks the solar panel's voltage, current, and power output to ensure optimal performance. Additionally, advanced solar inverters are equipped with Maximum Power Point Tracking (MPPT) technology, which analyzes and adjusts the solar panel's operating voltage and current to maximize energy production under different weather conditions and shading effects. Overall, a solar inverter plays a crucial role in efficiently managing and maximizing the energy production of a solar power system.
Q:How does a hybrid solar inverter work?
A hybrid solar inverter works by converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power appliances and equipment in a home or business. It also has the ability to store excess electricity in batteries for later use. Additionally, it can draw electricity from the grid when solar power is not sufficient, ensuring a continuous power supply. Overall, a hybrid solar inverter maximizes the use of solar energy and provides flexibility in managing electricity consumption.
Q:How does a solar inverter handle voltage harmonics?
A solar inverter handles voltage harmonics by using filtering techniques and advanced control algorithms. These methods help to smooth out the output voltage waveform, reducing or eliminating any unwanted harmonics.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords