• 3kw Solar Inverter Price Pure Sine Wave Inverter 48V 6000W 2024 Top Selling South Africa EP 3000 SeriesWave Inverter System 1
  • 3kw Solar Inverter Price Pure Sine Wave Inverter 48V 6000W 2024 Top Selling South Africa EP 3000 SeriesWave Inverter System 2
  • 3kw Solar Inverter Price Pure Sine Wave Inverter 48V 6000W 2024 Top Selling South Africa EP 3000 SeriesWave Inverter System 3
  • 3kw Solar Inverter Price Pure Sine Wave Inverter 48V 6000W 2024 Top Selling South Africa EP 3000 SeriesWave Inverter System 4
3kw Solar Inverter Price Pure Sine Wave Inverter 48V 6000W 2024 Top Selling South Africa EP 3000 SeriesWave Inverter

3kw Solar Inverter Price Pure Sine Wave Inverter 48V 6000W 2024 Top Selling South Africa EP 3000 SeriesWave Inverter

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

EP3200 series inverter adopt very new model copper transformer so the efficiency reach to 90% and lower consumption (NEW !)

Pure sine wave solar hybrid inverter for solar system and home appliances . EP3200 series developed on the base of our very popular EP3000 series . EP3200 has achieved significant improvements on battery charging , AC transfer , bypass etc .

By adopting DIP(Dual-in-line) switch , EP3200 series inverter provides more smarter options for users to customize the performance of the device . Main for home solar system including air conditioner , refrigerator , washing machine , water pump , fans , tv , lights etc .

Features :

1. High overload ability of our EP3200 charger is up to 300% rated power

2. EP3200 pure sine wave inverter adopts low quiescent current, and power saver mode to reduce power consumption to 3W . It can extract max. power from various batteries with different protections, and low voltage trip can be selected (10V/10.5V/11V).

3. Uses PFC (power factor correction) for charger, which has less power consumption than conventional units.

4. It has 10s delay before transfer when AC resumes, and overload protection when our APC pure sine wave inverter equips with generator.

5. 10ms typical transfer time between battery and AC, which guarantees power continuity of EP3200 charger. Uses selectable input AC voltage (185-265V or 155-255V) for different kinds of loads.

6. Our EP3200 charger allows start up and through power with depleted batteries. Its powerful charge rate up to 70Amp.

7. It can offer 3-step intelligent battery charging, and equipped with 6 preset battery type selector for totally flat batteries.

8. LCD status display, battery/AC priority switch, RS232 communication port are available for our EP3200 pure sine wave inverter, it also has 17 alarms/warnings for easier operation and trouble-shooting, and ability to switch the unit on/off. In addition, select/deselect power saver mode can be used too.

Rated Capacity 4000W 5000W 6000W
Efficiency>90%
Input
Model120v Models230v Models
Nominal Voltage100V/110V/115V/120VSelectable200V/220V/230V/240V Selectable
Output
Rated Power4000W5000W  6000W
Output Voltage100V/110V/115V/120V Selectable200V/220V/230V/240V Selectable
Voltage WaveformPure Sine Wave
Crest Factor3:1
Transfer TimeTransfer Time : AC To DC : 10ms (Typical)
Transfer Time : DC To AC : 10ms(Typical )
Max Bypass 
Overload Current
30A
Input
Nominal VoltageDC24V/48VDC48VDC48V
Over Current ProtectionBy Re-Settable Over Current Protector
Output
Regulation (Nominal)±10% Typical Of Nominal Voltage
Nominal Input Voltage230Vac
Input Voltage Range185-265Vac
Nominal Output VoltageAccording To The Battery Type
Nominal Charge Current30Amp-70Amp
Battery TypeLead-Acid 12Ah ~ 250Ah
Typical Backup TimeNo Limit
Charging MethodSmart Pulse Charging With Two Charging Modes:
Quick Charging When Battery Is Not Fully Charged, 
Trickle Charging When Battery Is 90% Fully Charged.
Average Charging
Current
65A/35A70A/40A50A
Battery Voltage options
Options 7Battery low trip to bypass 11v , high trip to battery 14v
Options 8Battery low trip to bypass 10.5v , high trip to battery 13.5v
Options 9Battery low trip to bypass 10v , high trip to battery 13v
Communications & Management
Control PanelLCD/LED Option
Audible AlarmAlarm On Battery:
Low Battery & Battery Over Voltage
Alarm On Abnormal Operation:
Over Load, Short-Circuit, & Over Heat
Environment And Safe
Operating
Temperature
0℃ To 40℃ (32℉ To 104℉)
Transit/Storage 
Temperature
-15℃ To 60℃
Audible Noise60 Dba Max at 1m
Quality Control SystemISO 9001,FCC,CE
Physical
Dimensions: (H×D×W)755*320*310mm
G.W (Kg)37.547.547.5
PackingExport Carton For Each Unit Per Carton
Rated Capacity 4000W 5000W 6000W
Efficiency>90%
Input
Model120v Models230v Models
Nominal Voltage100V/110V/115V/120VSelectable200V/220V/230V/240V Selectable
Output
Rated Power4000W5000W  6000W
Output Voltage100V/110V/115V/120V Selectable200V/220V/230V/240V Selectable
Voltage WaveformPure Sine Wave
Crest Factor3:1
Transfer TimeTransfer Time : AC To DC : 10ms (Typical)
Transfer Time : DC To AC : 10ms(Typical )
Max Bypass 
Overload Current
30A
Input
Nominal VoltageDC24V/48VDC48VDC48V
Over Current ProtectionBy Re-Settable Over Current Protector
Output
Regulation (Nominal)±10% Typical Of Nominal Voltage
Nominal Input Voltage230Vac
Input Voltage Range185-265Vac
Nominal Output VoltageAccording To The Battery Type
Nominal Charge Current30Amp-70Amp
Battery TypeLead-Acid 12Ah ~ 250Ah
Typical Backup TimeNo Limit
Charging MethodSmart Pulse Charging With Two Charging Modes:
Quick Charging When Battery Is Not Fully Charged, 
Trickle Charging When Battery Is 90% Fully Charged.
Average Charging
Current
65A/35A70A/40A50A
Battery Voltage options
Options 7Battery low trip to bypass 11v , high trip to battery 14v
Options 8Battery low trip to bypass 10.5v , high trip to battery 13.5v
Options 9Battery low trip to bypass 10v , high trip to battery 13v
Communications & Management
Control PanelLCD/LED Option
Audible AlarmAlarm On Battery:
Low Battery & Battery Over Voltage
Alarm On Abnormal Operation:
Over Load, Short-Circuit, & Over Heat
Environment And Safe
Operating
Temperature
0℃ To 40℃ (32℉ To 104℉)
Transit/Storage 
Temperature
-15℃ To 60℃
Audible Noise60 Dba Max at 1m
Quality Control SystemISO 9001,FCC,CE
Physical
Dimensions: (H×D×W)755*320*310mm
G.W (Kg)37.547.547.5
PackingExport Carton For Each Unit Per Carton

Pure Sine Wave Inverter 48V 6000W 2015 Top Selling South Africa EP 3000 SeriesWave Inverter

Pure Sine Wave Inverter 48V 6000W 2015 Top Selling South Africa EP 3000 SeriesWave Inverter

Pure Sine Wave Inverter 48V 6000W 2015 Top Selling South Africa EP 3000 SeriesWave Inverter

Warrenty

provides a 13 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later. This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to MUST-Solar. This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

FAQ

1.    How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3. How do I install my system ?

A must solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

 

Q: Can a solar inverter be used with concentrated solar power systems?
Yes, a solar inverter can be used with concentrated solar power systems. Concentrated solar power systems use mirrors or lenses to concentrate sunlight onto a receiver, which then converts the solar energy into heat or electricity. The solar inverter is responsible for converting the DC (direct current) power generated by the concentrated solar power system into AC (alternating current) power that can be used to power appliances and feed into the electrical grid. Therefore, a solar inverter is an essential component in the integration of concentrated solar power systems into the electrical infrastructure.
Q: Can a solar inverter be used with batteries for energy storage?
Yes, a solar inverter can be used with batteries for energy storage. The solar inverter converts the DC (direct current) electricity generated by the solar panels into AC (alternating current) electricity that can be used to power household appliances. When connected to batteries, the excess solar energy generated during the day can be stored in the batteries for later use, such as during nighttime or when the solar panels are not producing enough electricity. This allows for a more efficient and reliable use of solar energy.
Q: What is the role of a reactive power controller in a solar inverter?
The role of a reactive power controller in a solar inverter is to regulate and manage the reactive power flow in the electrical system. It ensures the power factor remains within acceptable limits, improving the overall stability and efficiency of the solar inverter system. The reactive power controller monitors the reactive power demand and supply, adjusting the voltage and current as needed to maintain a balanced power factor and minimize losses in the system.
Q: What is the operating temperature range of a solar inverter?
The operating temperature range of a solar inverter typically falls between -20°C to 50°C (-4°F to 122°F), although this can vary depending on the specific model and manufacturer.
Q: Can a solar inverter be used in areas with high altitude and low temperature conditions?
Areas with high altitude and low temperature conditions can indeed use a solar inverter. However, it is important to take certain factors into account when choosing one for such conditions. The efficiency of a solar inverter can be affected by high altitude, as the reduced air density and oxygen levels can lead to a decrease in power output from the solar panels. Therefore, it is vital to select an inverter that is specifically designed to function at high altitudes. These inverters come equipped with features like advanced cooling systems and improved power electronics to ensure optimal performance in such environments. Similarly, low temperature conditions can also impact the efficiency of a solar inverter. Cold temperatures can negatively affect the internal components of the inverter and overall performance. To overcome this challenge, it is recommended to choose an inverter that is designed to operate in low-temperature environments. These inverters typically include features such as internal heaters and temperature sensors to maintain optimal performance even in freezing temperatures. Furthermore, it is advisable to seek guidance from a professional solar installer or manufacturer who can assist in selecting the most suitable solar inverter for high altitude and low-temperature conditions. They can consider factors like local climate, altitude, and specific installation requirements to ensure that the system is designed to withstand and perform optimally in these demanding conditions.
Q: What certifications should I look for when choosing a solar inverter?
When choosing a solar inverter, it is important to look for certifications such as UL listing, IEC 61727 compliance, and IEEE 1547 compliance. These certifications ensure that the inverter meets safety and performance standards, and is compatible with grid connection requirements.
Q: Are there any specific installation requirements for solar inverters?
Yes, there are specific installation requirements for solar inverters. Here are some key considerations: 1. Location: Solar inverters should be installed in a well-ventilated area, away from direct sunlight or any potential sources of heat. They should also be placed in a clean and dry environment to ensure optimal performance and longevity. 2. Mounting: Inverters can be mounted on walls or placed on flat surfaces, but it is important to follow the manufacturer's guidelines for proper mounting techniques and ensure that they are securely fastened. 3. Wiring: Adequate wiring is essential for connecting the solar panels to the inverter and the inverter to the electrical grid. The wiring should be properly sized, based on the system's specifications, to handle the voltage and current requirements without any voltage drop or overheating. 4. Electrical connections: The inverter should be connected to a dedicated circuit breaker or fuse in the main electrical panel. This circuit breaker or fuse should be properly sized to protect the inverter and the electrical system from any potential hazards. 5. Clearances: Solar inverters require specific clearances to ensure proper ventilation and prevent overheating. The manufacturer's guidelines should be followed to determine the necessary clearances around the inverter. 6. Monitoring and safety devices: Some inverters require additional monitoring and safety devices, such as surge protectors, arc fault circuit interrupters (AFCIs), or rapid shutdown devices. These devices should be installed according to the manufacturer's instructions and local electrical codes. 7. Compliance with regulations: It is crucial to comply with local electrical codes and regulations when installing solar inverters. This may include obtaining necessary permits and inspections to ensure a safe and compliant installation. It is recommended to consult with a professional solar installer or electrician who is knowledgeable about solar inverter installations to ensure that all the specific requirements are met for your particular system.
Q: Can a solar inverter be used with different types of power conditioning units?
Yes, a solar inverter can be used with different types of power conditioning units. Solar inverters are designed to convert the DC power generated by solar panels into AC power that can be used by various electrical devices. They can be compatible with different types of power conditioning units, such as battery storage systems or grid-tied inverters, depending on the specific requirements and setup of the solar power system.
Q: How does a solar inverter communicate with monitoring systems?
A solar inverter communicates with monitoring systems through various means such as wireless technologies like Wi-Fi, Bluetooth, or Zigbee, or through wired connections like Ethernet or RS485. These communication channels allow the inverter to transmit important data and performance metrics to the monitoring systems in real-time.
Q: Is the PV inverter a current source or a voltage source?
Photovoltaic inverter, also known as power regulator, according to the inverter in the use of photovoltaic power generation system can be divided into two kinds of independent power supply and grid.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords