• ductile iron pipe china Sewage Water System 1
ductile iron pipe china Sewage Water

ductile iron pipe china Sewage Water

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

  • Place of Origin:China (Mainland)

  • Model Number:DN80-1600

  • Length:6M/5.7M/NEGOTIATED

  • Standard:ISO2531 / EN545

  • Application:Potable/Sewage Water

  • Diameter:DN80-1600

  • Shape:Round

  • Hardness:230

  • Pipe Wall Thickness:standerd

  • Pull Strength:420

  • Yield (≥ MPa):300

  • Material:Ductile Iron

  • water ductile iron pipe:SO2531 / EN545 DI pipe

Packaging & Delivery

Delivery Detail:30-45 days

Specifications

ductile iron pipe:
1. DN80-DN1600mm (T-Type, Class K9)
2.effective length 6m/pc
3.comply with ISO2531/EN545/EN598

Company Profile

CNBM International Corporation is the leading production base and renowned supplier of Ductile Iron Water Pipe systems of both potable and waste water in China. We are constantly looking to develop high quality products to ensure the longest service life and wonderful performance.


CNBM Pipelines regard quality as the essential factor leading to successful business. Every ductile iron pipe is tested in accordance with BS EN545 (water application) or BS EN598 (sewer application). CNBM Pipelines products comply with and are tested according to the relevant European and International Standards. Our pipes are manufactured under the quality management system BS EN ISO 9001. After years of efforts, CNBM Pipelines has built up great reputation in terms of quality and service among customers worldwide.


Product Introduction

CNBM ductile iron pipe ranges from DN80-DN1600mm (Tyton, T-Type, Class K7/K8/K9), effective length: 6m, complying with ISO2531and EN545 standards.


Specification& Payment terms

Internal lining:      ductile iron pipes shall have an internal cement mortar lining in acc with ISO4179.


External coating:  ductile iron pipes shall be externally coated with metallic zinc spray plus a further layer of resin painting to ISO8179.

Gasket:              100% SBR/NBR/EPDM rubber gasket in accordance with ISO4633.

Packing:             ductile iron pipes from DN100 to DN300 be bundled with steel belts, others are in bulk.

Payment term:    L/C, T/T.
Packing:             In bulk vessel or in container


Q: What are the different methods for joining ductile iron pipe?
There exists a variety of methods to join ductile iron pipe, each possessing its own advantages and limitations. One commonly utilized technique is the mechanical joint (MJ) coupling, where a rubber gasket, bolts, and nuts are employed to establish a watertight seal between pipe sections. This method is comparatively swift and straightforward to install, although it necessitates the expertise of a skilled technician to ensure proper alignment and bolt tightening to prevent leakage. Another approach is the flanged joint, which involves equipping the pipe ends with flanges that are fastened together using gaskets to form a secure seal. This method permits easy disassembly and reassembly of pipe sections, making it suitable for applications requiring frequent maintenance or alterations. However, it is more costly and time-consuming when compared to other methods. A widely employed method is the push-on joint (POJ), wherein a rubber gasket and a special lubricant are utilized to slide the pipe ends together. This technique yields a reliable and watertight seal, and installation is relatively rapid and simple. However, it necessitates proper alignment and cautiousness to prevent damage to the gasket during assembly. An alternative option is the restrained joint (RJ), which utilizes a mechanical joint coupling with additional features to resist axial forces or thrusts. This method is commonly employed in applications where the pipe is subjected to internal pressure, external loads, or seismic activity. It offers a secure and rigid connection but may require specialized tools and training for installation. Lastly, welding is another method for joining ductile iron pipe. This involves heating the pipe ends and melting a filler metal to create a permanent bond. Welding provides a strong and durable connection, but it demands skilled welders and additional time for preparation, welding, and cooling. It is often employed for specific applications, such as joining sections of pipe with different diameters or connecting to other materials. In conclusion, the various methods for joining ductile iron pipe encompass mechanical joint coupling, flanged joint, push-on joint, restrained joint, and welding. The selection of the method relies on factors such as application requirements, installation time, maintenance needs, and budget.
Q: Are ductile iron pipes prone to external corrosion?
Ductile iron pipes are generally not prone to external corrosion. This is due to the protective nature of the material itself. Ductile iron pipes are made of a strong and durable material that contains a significant amount of graphite. The graphite acts as a natural barrier against external corrosion, preventing the pipe from being affected by rust or other forms of oxidation. Additionally, ductile iron pipes are often coated with a protective layer, such as cement mortar or polyethylene, to further enhance their resistance to corrosion. These coatings provide an extra layer of protection, preventing any contact between the pipe and corrosive substances in the environment. However, it should be noted that while ductile iron pipes are generally resistant to external corrosion, they may still be susceptible to localized corrosion in certain conditions. Factors such as soil composition, moisture content, and the presence of certain chemicals can potentially lead to the corrosion of ductile iron pipes in specific areas. Therefore, proper maintenance and regular inspections are necessary to identify and address any potential corrosion issues promptly. Overall, ductile iron pipes are considered to be highly resistant to external corrosion, but like any other material, they require proper care and maintenance to ensure their long-term durability and reliability.
Q: How do ductile iron pipes handle dynamic loads?
Ductile iron pipes are well-suited to handle dynamic loads due to their high tensile strength and flexibility. The inherent ductility of the material allows the pipes to withstand the stress and strain caused by dynamic loads, such as water hammer or ground movement, without fracturing or breaking. This makes them a reliable choice for applications where frequent load variations or transient events are expected.
Q: The benefits of ductile iron castings
Nodular cast iron, is a kind of high strength cast iron material developed in 50s twentieth Century, its comprehensive performance is close to the steel, it is based on its excellent performance, has been successfully used in casting complex stress, strength, toughness and wear resistance requirements of the higher parts.
Q: How does ductile iron pipe perform in areas with high ground movement?
Ductile iron pipe performs exceptionally well in areas with high ground movement. Its unique properties and design make it highly resistant to deformation and damage caused by ground shifting, settling, or seismic activities. The ductility of the material allows it to withstand significant stress and strain without fracturing or breaking. Unlike rigid materials such as cast iron or PVC, ductile iron pipe has the ability to flex and absorb ground movement, which prevents catastrophic failures and ensures the integrity of the pipeline system. Additionally, ductile iron pipe is manufactured with a variety of joint configurations that further enhance its performance in areas with high ground movement. Flexible joints, such as restrained joints or mechanical joints, accommodate the movement by allowing limited rotation and translation, minimizing the potential for pipe separation or joint failure. Furthermore, the robust construction of ductile iron pipe, which includes a thick wall thickness and a high tensile strength, provides additional protection against ground movement. This strength helps the pipe withstand external loads and forces induced by the ground, preventing deformation and maintaining its structural integrity. In conclusion, ductile iron pipe is an ideal choice for areas with high ground movement due to its exceptional ductility, joint flexibility, and robust construction. Its ability to absorb ground movement without compromising the pipeline system's functionality or safety makes it a reliable and durable option in such challenging environments.
Q: What are the advantages of using ductile iron pipe?
Using ductile iron pipe in various applications offers several benefits. Firstly, ductile iron pipe is renowned for its strength and durability. It possesses higher tensile and yield strengths compared to other pipe materials, making it highly resistant to cracking, bending, and breaking. This exceptional strength enables the pipe to withstand high-pressure and heavy-load conditions, making it an ideal choice for applications such as water and sewage systems, oil and gas pipelines, and industrial piping. Secondly, ductile iron pipe exhibits excellent corrosion resistance. It is coated with a protective layer, typically zinc or epoxy, which prevents rusting and corrosion. This coating ensures a longer lifespan for the pipe, even in harsh environments or when transporting corrosive fluids. Another advantage of ductile iron pipe lies in its flexibility. Unlike rigid pipes, ductile iron pipes possess a certain level of flexibility, enabling them to endure ground movements and settle without fracturing. This flexibility proves particularly advantageous in areas prone to earthquakes or soil settlements. Additionally, ductile iron pipe boasts a smooth inner surface, minimizing flow resistance and enhancing fluid transportation efficiency. It also reduces the likelihood of sediment accumulation or corrosion within the pipe, resulting in improved flow rates and decreased maintenance requirements. Furthermore, ductile iron pipe proves cost-effective in the long run. Although it may entail higher initial costs compared to other pipe materials, its durability and minimal maintenance needs make it a cost-effective choice over time. The extended lifespan of ductile iron pipe reduces the necessity for frequent replacements and repairs, contributing to lower overall life-cycle expenses. Lastly, ductile iron pipe exhibits environmental friendliness. It is manufactured using recycled materials, and its extended lifespan diminishes the need for frequent replacements, thereby reducing the carbon footprint associated with manufacturing and transportation. In conclusion, the utilization of ductile iron pipe offers numerous advantages, including exceptional strength, corrosion resistance, flexibility, smooth inner surface, cost-effectiveness, and environmental friendliness. These qualities establish it as a reliable and preferred option for various applications across diverse industries.
Q: Do rigid cement cast iron pipes need cement piers?
Ductile weakness: ductile cast iron pipes connected by human factors such as the operation level of responsibility, influence, construction not convenient. The advantages of PE PE PE pipe has good corrosion resistance and its anti inorganic performance than that of the metal pipe is much stronger in the buried without corrosion, construction convenient. Small diameter PE pipe in the price performance ratio is better than that of steel and ductile iron.PE tube have disadvantages: benzene, gasoline, carbon tetrachloride and other organic solvents have certain effect on pe. If the organic solvent is infiltrated into the polyethylene, the swelling will occur, and its physical properties will be decreased. Its pressure resistance and temperature resistance are poor.
Q: What are the different types of thrust restraints for ductile iron pipe?
Ductile iron pipe installations utilize various thrust restraints to prevent pipe movement or separation caused by internal pressure, external loads, or temperature changes. 1. Concrete thrust blocks are structures installed at bends, tees, and directional changes in the pipeline. Their purpose is to transfer thrust forces to the surrounding soil or foundation, effectively resisting pipe movement. 2. Mechanical restraints, such as tie rods or harnesses, are steel-based devices that apply external force to restrain the pipe. They can be adjusted to accommodate changes in pipe length or alignment. 3. Pipe anchors, made of steel, are installed at intervals along the pipeline to provide resistance against axial movement. These anchors are embedded into the surrounding soil or concrete, securing the pipe firmly. 4. Thrust collars, typically made of steel, encircle the pipe to prevent movement or separation. They are strategically placed along the pipeline to absorb thrust forces. 5. Restrained joint systems are specialized pipe joints designed to resist axial forces. They possess additional features like keyways or wedges, enhancing resistance against movement. Selecting the appropriate thrust restraint system for ductile iron pipe installations depends on factors such as pipe diameter, operating pressure, soil conditions, and potential external loads. Consulting with qualified engineers or pipe manufacturers ensures the proper selection and installation of thrust restraints.
Q: Can ductile iron pipes be used for gravity flow applications?
Yes, ductile iron pipes can be used for gravity flow applications. Ductile iron pipes are known for their strength, durability, and flexibility, making them ideal for various applications including gravity flow systems. They are commonly used in water and wastewater systems, storm drainage systems, and other gravity flow applications where the pipes need to withstand high internal and external pressures. Ductile iron pipes are able to handle the weight of the flowing fluid without the need for additional support, making them a reliable choice for gravity flow applications. Additionally, their corrosion resistance properties ensure long-term performance in underground or exposed environments. Therefore, ductile iron pipes are suitable and commonly used for gravity flow applications.
Q: Can ductile iron pipes be used for underground hydropower systems?
Indeed, underground hydropower systems can utilize ductile iron pipes. Renowned for their robustness and endurance, ductile iron pipes are apt for a wide range of purposes, including subterranean installations. With remarkable resistance against corrosion and the ability to withstand intense pressure, they are exceptionally suited for transporting water in hydropower systems. Furthermore, ductile iron pipes boast a lengthy lifespan, diminishing the necessity for frequent replacements and reducing maintenance expenses. Moreover, they exhibit excellent joint integrity, guaranteeing leak-free connections beneath the surface. Thus, ductile iron pipes emerge as a dependable option for underground hydropower systems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords