• Steel tunnel for formwork  and scaffolding system System 1
  • Steel tunnel for formwork  and scaffolding system System 2
Steel tunnel for formwork  and scaffolding system

Steel tunnel for formwork and scaffolding system

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m²
Supply Capability:
1000 m²/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Building Tunnel Formwork

A compositional steel formwork system mainly used in the building which has regular structure

without beams, the excellent formwork system can make the integral pouring for the wall & slab

easily achieved.


Characteristics:

◆ High stiffness, make perfect shape for concrete.

◆ Easy operation, save labor and force.

◆ Fast forming, repeatedly turnover.


Q:What are the common safety precautions when working with steel formwork?
Some common safety precautions when working with steel formwork include wearing appropriate personal protective equipment (PPE) such as hard hats, safety glasses, gloves, and steel-toe boots. It is also important to ensure that the formwork is properly secured and braced to prevent collapse or movement. Regular inspections should be conducted to identify any defects or weaknesses in the formwork. Additionally, workers should receive proper training on how to safely assemble, disassemble, and handle the steel formwork to avoid any potential injuries.
Q:How does steel formwork handle formwork stripping and reassembly?
Steel formwork is highly effective in handling formwork stripping and reassembly due to its strength, durability, and versatility. When it comes to formwork stripping, steel formwork systems are designed to allow for easy and efficient removal of the formwork after the concrete has set. The steel panels can be easily detached from the structure, and the formwork components can be disassembled without causing any damage to the formwork system or the concrete structure. Steel formwork also offers quick and effortless reassembly capabilities. The panels can be easily repositioned and locked back into place, ensuring a precise and accurate alignment for the next concrete pour. The interlocking mechanism of steel formwork allows for a tight and secure connection, preventing any movement or displacement during the pouring and curing process. Moreover, steel formwork is known for its reusability. Unlike traditional timber formwork, steel formwork can be used multiple times without compromising its structural integrity. This not only makes it cost-effective but also reduces the environmental impact associated with formwork waste generation. Another advantage of steel formwork is its adaptability to different project requirements. Steel panels can be easily modified or customized to accommodate complex shapes, angles, or curves, providing flexibility in various construction applications. This adaptability ensures that steel formwork can handle the stripping and reassembly process efficiently, regardless of the project's design complexities. In summary, steel formwork is a highly reliable and efficient choice for handling formwork stripping and reassembly. Its strength, durability, reusability, and adaptability make it a preferred option in the construction industry, allowing for seamless and hassle-free formwork operations.
Q:What are the different types of joints used in steel formwork?
Steel formwork for construction projects commonly utilizes various types of joints to ensure stability and proper alignment of the system. 1. The most basic joint is the butt joint, which involves placing two formwork panels together with their edges abutting. Additional reinforcement, such as steel plates or angles, is often used to enhance strength and stability. 2. Corner joints, as the name suggests, connect formwork panels at corners. These joints are usually reinforced with steel angles or brackets to ensure proper alignment and support. 3. T-joints are used when formwork panels intersect at a perpendicular angle. This joint involves connecting three panels together, with one positioned perpendicular to the other two. 4. L-joints are similar to T-joints but are used when panels intersect at a 90-degree angle. This joint involves connecting two panels together, with one positioned perpendicular to the other. 5. Lap joints are used to connect long formwork panels, creating a continuous surface. This joint involves overlapping the edges of two panels and securing them with bolts or clamps. 6. Hinged joints are employed when adjustable or movable formwork panels are required. This joint allows for flexibility in placement and can be locked in different positions to accommodate various shapes and sizes. It is essential to consider the specific requirements of the construction project, including the desired formwork system and structural design, when selecting the appropriate joint. This selection plays a crucial role in ensuring the overall stability and strength of the formwork system.
Q:What are the different types of joints used in steel formwork construction?
There are various types of joints commonly utilized in steel formwork construction, each playing a vital role in ensuring the stability and strength of the system. 1. Butt Joint: This uncomplicated joint involves connecting two members in a straight line, end to end. It is frequently employed in formwork construction to connect steel beams or columns. 2. Lap Joint: In this type of joint, two members overlap and are secured together using bolts or welding. Lap joints are commonly used in steel formwork construction to join horizontal and vertical members, such as formwork panels. 3. T-Joint: As the name implies, a T-joint is created by joining two members at right angles. This joint is commonly used to connect steel bracing members, forming a stable framework for the formwork system. 4. Corner Joint: This joint is utilized to connect two members meeting at a 90-degree angle, ensuring proper alignment and stability of the formwork system. 5. Splice Joint: A splice joint joins two steel members end to end, creating a continuous length. This type of joint is commonly used when longer lengths of steel beams or columns are required in formwork construction. 6. Flange Joint: Flange joints connect two steel members with flanges, such as I-beams or channels. The flanges are bolted together, creating a robust and rigid connection. This joint is often used to connect horizontal beams or columns in formwork construction. Choosing the appropriate joint type is crucial in steel formwork construction, as it depends on specific project requirements such as load-bearing capacity, structural stability, and the type of connections needed for the formwork system.
Q:I would like to ask, large steel formwork and the average number of square meters of a template?
Single wage calculation, 9000 flat template assembly line
Q:Can steel formwork be used for marine construction projects?
Marine construction projects can indeed utilize steel formwork. The durability of steel makes it suitable for enduring the challenging conditions of the marine environment, including exposure to saltwater, waves, and corrosive elements. By providing the necessary strength and stability, steel formwork can withstand the forces exerted in marine settings. Its versatility allows it to be utilized in various marine construction applications, such as the construction of seawalls, piers, jetties, and offshore structures. Furthermore, steel formwork offers numerous advantages, including easy assembly and disassembly, reusability, and the ability to create intricate shapes and structures. However, to ensure the long-lasting performance of steel formwork in marine environments, it is crucial to implement proper corrosion protection measures, such as galvanization or the use of anti-corrosive coatings.
Q:Is steel formwork suitable for projects with tight deadlines?
Indeed, projects with tight deadlines can benefit from the use of steel formwork. Its exceptional durability and strength enable it to withstand high pressure and repetitive use. Consequently, it can be reused multiple times without compromising its structural integrity, resulting in faster construction. Furthermore, the assembly and disassembly of steel formwork are effortless, facilitating quick and efficient installation and removal. Its adaptability and versatility make it a suitable choice for construction projects of any scale or complexity. Consequently, incorporating steel formwork into projects with tight deadlines can accelerate the construction process and ensure timely completion.
Q:What are the safety considerations when working with steel formwork?
When working with steel formwork, there are several safety considerations that should be taken into account. First and foremost, workers must ensure that the formwork is properly installed and secured to prevent any collapse or instability. It is essential to follow manufacturer's instructions and guidelines for assembly and disassembly. Additionally, workers should be equipped with proper personal protective equipment (PPE) such as hard hats, gloves, and safety glasses to protect themselves from potential hazards such as falling objects or metal shards. Adequate training and supervision are also crucial to ensure that workers are aware of the potential risks and hazards associated with steel formwork and know how to work safely. Regular inspections of the formwork should be conducted to identify any signs of damage or deterioration that could compromise its structural integrity. Finally, proper communication and coordination among the team members is essential for a safe working environment when using steel formwork.
Q:What are the common design considerations for steel formwork?
To ensure the efficiency and effectiveness of steel formwork design, several factors must be taken into account. Firstly, the load-bearing capacity of the formwork needs careful calculation and design to support the weight of fresh concrete and any additional loads without deformation or failure. This involves evaluating maximum expected load and selecting the appropriate steel grade and thickness. Secondly, the formwork should be easily assembled and disassembled, which is crucial for projects with tight schedules or limited space. Modular components that can be quickly and accurately connected should be used, allowing for efficient construction and easy removal after the concrete cures. Thirdly, the desired surface finish of the concrete should be considered in the formwork design. Proper alignment and leveling are necessary for a smooth and consistent finish. Additionally, the formwork should be designed to prevent leakage or seepage, which could cause imperfections or structural issues. Stability and rigidity are also important considerations. The formwork must withstand lateral pressure from the fresh concrete without significant deformation or displacement. Proper bracing and tie systems should be incorporated for stability during the pouring process. Safety should be prioritized in the formwork design, providing a safe working environment with adequate access, guardrails, and fall protection systems. Installation and removal of safety features should also be considered. Lastly, the reusability and durability of the steel components should be taken into account. The formwork should be designed to withstand repeated use and resist corrosion or wear. Maintenance and storage considerations are also important for prolonging the lifespan of the formwork. In conclusion, the design of steel formwork should consider load-bearing capacity, ease of assembly and disassembly, surface finish requirements, stability and rigidity, safety, reusability, and durability. By carefully considering these factors, well-designed steel formwork can contribute to the successful and efficient construction of concrete structures.
Q:How does steel formwork contribute to the overall acoustics of the structure?
Steel formwork does not directly contribute to the overall acoustics of a structure as its primary function is to provide support and shape during the construction process. The acoustics of a building are primarily influenced by the design and materials used for the walls, ceilings, and floors, which are usually installed after the steel formwork is removed.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords