• Hot Rolled Steel Bar Equal Bar Unequal Bar Q235 System 1
  • Hot Rolled Steel Bar Equal Bar Unequal Bar Q235 System 2
  • Hot Rolled Steel Bar Equal Bar Unequal Bar Q235 System 3
Hot Rolled Steel Bar Equal Bar Unequal Bar Q235

Hot Rolled Steel Bar Equal Bar Unequal Bar Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Steel Bar Equal Bar Unequal Bar Q235 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Steel Bar Equal Bar Unequal Bar Q235 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Steel Bar Equal Bar Unequal Bar Q235 are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Specifications of Angle Steel

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel

Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

5. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

6.Material details:

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

Usage & Applications of Angle Steel

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

Packaging & Delivery of Angle Steel

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

Production flow of Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

Q:Can steel angles be used in fencing?
Indeed, fencing can make use of steel angles. Steel angles find frequent application in fencing scenarios, serving to furnish structural reinforcement and stability. Their utility ranges from functioning as posts to serving as crossbars, contingent upon the particular design of the fencing. Steel angles possess robustness and durability, rendering them well-suited for enduring various elements whilst guaranteeing security. Through facile welding or bolting, steel angles can effortlessly be conjoined to construct a resilient fencing structure. Furthermore, steel angles can be galvanized or coated, augmenting their resistance to rust and corrosion, thereby securing a fencing solution that endures for a prolonged period with minimal maintenance.
Q:Can steel angles be used in the construction of religious institutions?
Certainly, religious institutions can utilize steel angles in their construction projects. Given their strength, versatility, and durability, steel angles are widely employed in various construction endeavors. They not only provide structural support but can also be applied in framing, roofing, and reinforcing, among other applications. In the context of erecting religious institutions, steel angles can serve as the foundation for walls, roofs, and floors, while also lending support to architectural elements like domes or spires. Moreover, steel angles can be easily fabricated and tailored to meet specific design specifications. In summary, the use of steel angles in constructing religious institutions ensures the resilience and longevity of the edifice, while allowing for artistic ingenuity and adaptability.
Q:How do you transport and ship steel angles?
Transporting and shipping steel angles require careful planning and proper handling to ensure their safe and efficient delivery. Here are some key steps involved in the transportation and shipping process: 1. Packaging: Steel angles should be properly packaged to prevent damage during transit. They are often bundled together using steel bands or placed on pallets to keep them secure and stable. 2. Size and weight considerations: Before shipping, it is important to consider the size and weight of the steel angles. This information is crucial for determining the appropriate mode of transportation and selecting the right shipping containers or vehicles. 3. Mode of transportation: Steel angles can be transported by various means, including trucks, trains, ships, or planes. The choice of transportation mode depends on factors such as distance, urgency, and cost. For domestic shipments, trucks or trains are commonly used, while for international shipments, ships or planes are preferred. 4. Loading and securing: Proper loading and securing of steel angles are essential to prevent any movement or damage during transit. They should be loaded onto transportation vehicles using appropriate lifting equipment, ensuring that they are evenly distributed and properly secured to prevent shifting or falling. 5. Insurance and documentation: It is advisable to obtain appropriate insurance coverage for the steel angles during transportation to protect against any unforeseen circumstances. Additionally, proper documentation, including bills of lading, shipping labels, and customs paperwork, should be prepared and attached to the shipment to facilitate smooth transit and customs clearance. 6. Compliance with regulations: When shipping steel angles, it is important to comply with all relevant regulations and requirements. This includes adhering to weight restrictions, securing necessary permits or licenses, and following any special handling or safety guidelines. 7. Tracking and monitoring: Throughout the transportation and shipping process, it is crucial to have effective tracking and monitoring systems in place. This allows for real-time visibility of the shipment's location, ensuring timely delivery and prompt intervention in case of any issues or delays. By following these steps and working with experienced logistics partners, you can ensure that steel angles are transported and shipped safely and efficiently, minimizing the risk of damage or delays.
Q:Where does channel steel use more? Where does angle iron use more?
Hot rolled stainless steel ordinary channel (GB707-88) main use: ordinary channel steel, mainly used for building structures, vehicle manufacturing and other industrial structures, often with the use of i-beam.
Q:What is the difference between the main keel and the angle steel and the channel steel?
The boat in the boat, the boat is keel or load-bearing structure is the most important. It's at the bottom of the ship. On the keel, there is reinforcement across the ship's ribs. The bow and stern keel off the bow post. The keel is usually the first one to be part of the hull construction. The keel laying is the most important event in the shipbuilding process.
Q:How do you protect steel angles during transportation?
To protect steel angles during transportation, it is important to use proper packaging and secure them tightly to prevent any movement or shifting. This can be achieved by using sturdy crates or pallets, wrapping them in protective materials such as foam or bubble wrap, and using straps or bands to secure them in place. Additionally, ensuring that the angles are properly cushioned and avoiding contact with other sharp or abrasive materials will help prevent any damage or scratches.
Q:How do steel angles perform under dynamic loads?
Steel angles generally perform well under dynamic loads due to their inherent strength and durability. The structural shape of steel angles, characterized by their L-shaped cross-section, provides excellent resistance to bending and torsional forces. This design allows them to efficiently distribute dynamic loads and resist deformation, making them suitable for various applications in construction, engineering, and manufacturing industries. However, the specific performance of steel angles under dynamic loads can vary depending on factors such as the grade and quality of the steel, the magnitude and frequency of the dynamic load, and the overall design and reinforcement of the structure.
Q:How do you prevent steel angles from twisting?
There are several methods that can be employed to prevent steel angles from twisting: 1. Proper fabrication techniques: Ensure that the steel angles are fabricated accurately and precisely, with straight and square cuts. This will help maintain the structural integrity of the angles and prevent them from twisting. 2. Bracing and supports: Use appropriate bracing and supports during the installation process to provide stability to the steel angles. These can include temporary supports, diagonal bracing, or cross bracing, depending on the specific application. 3. Welding techniques: When joining steel angles together, use proper welding techniques to minimize distortion and twisting. This includes using the correct welding process, ensuring proper heat control, and employing suitable fixturing to hold the angles in place during the welding process. 4. Anchoring methods: Depending on the specific application, anchoring methods such as bolting, screwing, or welding the steel angles to other structural elements can help prevent twisting. These anchoring methods provide additional stability and prevent the angles from rotating or twisting under external forces. 5. Regular inspections and maintenance: Conduct regular inspections to identify any signs of twisting or distortion in the steel angles. If any issues are detected, take immediate corrective action to rectify the problem and prevent further twisting. Overall, a combination of accurate fabrication, proper bracing and supports, appropriate welding techniques, anchoring methods, and regular maintenance can effectively prevent steel angles from twisting and ensure their structural stability.
Q:How do steel angles perform in terms of sound reflection or absorption?
Steel angles, commonly utilized in construction and engineering, primarily serve to provide structural support and stability. When it comes to sound reflection or absorption, steel angles have negligible impact. Owing to their dense and inflexible composition, steel angles tend to reflect sound rather than absorb it. Consequently, sound waves encountering a steel angle bounce off its surface and continue to propagate in the surrounding area. Therefore, steel angles are generally not relied upon for soundproofing purposes. To effectively manage sound reflection and absorption, alternative materials possessing sound-dampening properties, such as acoustic panels, insulation, or specialized soundproofing materials, are usually employed. These materials are specifically designed to absorb sound waves and reduce their reflection, ultimately resulting in a quieter and more controlled acoustic environment. To sum up, due to their rigid and reflective nature, steel angles are ineffective in terms of sound reflection or absorption. Alternative materials should be considered for soundproofing purposes to attain the desired acoustic performance.
Q:How do you determine the axial capacity of a steel angle?
To determine the axial capacity of a steel angle, several factors need to be taken into consideration. Firstly, it is important to determine the yield strength of the steel angle. This is typically provided by the manufacturer and can be found in material specifications. The yield strength represents the maximum stress the steel angle can sustain without experiencing permanent deformation. Next, the cross-sectional area of the steel angle needs to be calculated. This can be done by measuring the dimensions of the angle, such as the thickness and the length of the legs. The cross-sectional area is then calculated by multiplying the thickness by the sum of the two leg lengths. Once the cross-sectional area is determined, the axial capacity can be calculated by multiplying the yield strength by the cross-sectional area. This will provide the maximum load that the steel angle can carry in a purely axial direction without failure. It is important to note that there are other factors that can affect the axial capacity of a steel angle, such as the presence of holes or notches, the slenderness ratio, and the loading conditions. Therefore, it is recommended to consult relevant design codes, standards, or engineering handbooks for more in-depth guidance and to account for these additional factors.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords