• Hot Rolled High Carbon PC Strand in Steel Wire Rod System 1
  • Hot Rolled High Carbon PC Strand in Steel Wire Rod System 2
  • Hot Rolled High Carbon PC Strand in Steel Wire Rod System 3
  • Hot Rolled High Carbon PC Strand in Steel Wire Rod System 4
  • Hot Rolled High Carbon PC Strand in Steel Wire Rod System 5
  • Hot Rolled High Carbon PC Strand in Steel Wire Rod System 6
Hot Rolled High Carbon PC Strand in Steel Wire Rod

Hot Rolled High Carbon PC Strand in Steel Wire Rod

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Wire Rod

Hot Rolled High Carbon PC Strand in Steel Wire Rod 

 

Specification

Grade

Dia(mm)

Standard

Chemical Composition %

 

 

 

C

Si

Mn

P

S

Ni

Cr

Cu

V

YL77B

5.5-13mm

GB/T24238-2009

0.75-0.80

0.10-0.30

0.60-0.90

≤0.025

≤0.025

≤0.10

≤0.35

≤0.20

 

YL82B

 

 

0.80-0.85

0.10-0.30

0.60-0.90

≤0.025

≤0.025

≤0.10

≤0.35

≤0.20

0.15

SWRH62B

 

JIS G3506-1996

0.59-0.66

0.15-0.35

0.60-0.90

≤0.030

≤0.030

 

 

≤0.030

 

SWRH67B

 

 

0.64-0.71

0.15-0.35

0.60-0.90

≤0.030

≤0.030

 

 

≤0.030

 

SWRH72B

 

 

0.69-0.76

0.15-0.35

0.60-0.90

≤0.030

≤0.030

 

 

≤0.030

 

SWRH77B

 

 

0.74-0.81

0.15-0.35

0.60-0.90

≤0.030

≤0.030

 

 

≤0.030

 

SWRH82B

 

 

0.79-0.86

0.15-0.35

0.60-0.90

≤0.030

≤0.030

 

 

≤0.030

 

 

Chemical Composition

Grade

Chemical Composition(%)

C

Mn

Si

S

P

Cr

SAE1006B

0.03~O.07

≤0.32

≤0.30

≤0.045

≤0.040

0.3-0.35

Mechanical properties

Yield strength(N/mm2)

Tensile strength(N/mm2)

Elongation(%)

250-280

350-380

≥32

Grade

Chemical Composition(%)

C

Mn

Si

S

P

Cr

SAE1008B

0.10max

0.3~O.50

0.15max

0.050max

0.040 max

0.3-0.35

Mechanical properties

Yield strength(N/mm2)

Tensile strength(N/mm2)

Elongation(%)

≥195

315-430

≥30

 

Company Information

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

After-sale service

CNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business. 

For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours

Advantages 

Industry experience over 20 years.

Shipment of goods -More than 70 countries worldwide.

The most convenient transport and prompt delivery.

Competitive price with best service.

High technical production line with top quality products.

High reputation based on best quality products.

 

Products Show

Hot Rolled High Carbon PC Strand in Steel Wire Rod

 

FAQ

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok 

Why  choose  us?

Chose happens because of quality, then price, We can give you both. 

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

Where are your Market?

Covering more than 160 countries in the world

 

Q:What are the common defects found in special steel?
Some common defects found in special steel include surface defects such as scratches, pitting, and scaling, as well as internal defects like cracks, voids, and inclusions. These defects can negatively impact the mechanical properties and performance of the steel, compromising its strength, durability, and corrosion resistance.
Q:What are the common quality control measures for special steel?
Common quality control measures for special steel include: 1. Chemical Composition Analysis: Special steel often requires specific chemical compositions to meet the desired properties. Quality control measures involve analyzing the chemical composition through techniques like spectrometry to ensure it meets the required specifications. 2. Mechanical Testing: Special steel needs to possess specific mechanical properties such as strength, hardness, toughness, and ductility. Quality control measures involve conducting mechanical tests like tensile testing, hardness testing, impact testing, and fatigue testing to ensure the steel meets the required standards. 3. Non-Destructive Testing: Non-destructive testing methods like ultrasonic testing, magnetic particle testing, and dye penetrant testing are employed to detect any internal or surface defects in the steel. These tests help ensure the integrity and reliability of the special steel. 4. Dimensional Inspection: Special steel often requires precise dimensions for its intended application. Dimensional inspection involves measuring the length, width, thickness, diameter, and other critical dimensions to ensure they meet the required tolerances specified by the customer or industry standards. 5. Surface Quality Inspection: Special steel may require specific surface finishes or coatings to enhance its performance or resistance to corrosion. Quality control measures involve inspecting the steel surface for defects such as cracks, pits, scratches, or unevenness to ensure it meets the required surface quality standards. 6. Heat Treatment Verification: Special steel often undergoes heat treatment processes like annealing, quenching, or tempering to achieve the desired mechanical properties. Quality control measures involve verifying the effectiveness of the heat treatment process through hardness testing or microstructure analysis. 7. Documentation and Traceability: Quality control measures also involve maintaining comprehensive documentation and traceability records of the special steel, including details of its production process, chemical composition, mechanical properties, and any inspections or tests performed. This helps ensure quality consistency and provides a reference for future use or troubleshooting. By implementing these quality control measures, manufacturers can ensure that special steel meets the required specifications, providing customers with high-quality and reliable products for their specific applications.
Q:What are the specific requirements for special steel used in the electronics industry?
The specific requirements for special steel used in the electronics industry include high electrical conductivity, good corrosion resistance, high strength, and the ability to withstand extreme temperatures. Additionally, the steel must have excellent magnetic properties, low thermal expansion, and be easily formable and weldable for manufacturing electronic components.
Q:How does special steel contribute to the manufacturing of oil and gas equipment?
Special steel plays a vital role in the manufacturing of oil and gas equipment by offering exceptional strength, corrosion resistance, and high-temperature stability. This type of steel is specifically designed to withstand the harsh and challenging conditions encountered in the oil and gas industry, such as extreme temperatures, pressure, and corrosive environments. It is used to construct various components of equipment like pipes, valves, fittings, drilling tools, and offshore platforms. Special steel's superior properties ensure the reliability, durability, and safety of oil and gas equipment, enabling efficient operations in this critical sector.
Q:Can special steel be cast?
Yes, special steel can be cast. Castings of special steel are produced using various casting methods such as investment casting, sand casting, or continuous casting, depending on the specific requirements and properties of the steel.
Q:How does special steel perform in tooling applications?
Special steel performs exceptionally well in tooling applications due to its unique properties and characteristics. Special steel, also known as tool steel, is specifically designed and manufactured to withstand the demanding conditions of tooling applications. One key advantage of special steel is its high hardness. Tooling applications often involve cutting, shaping, and forming hard materials, and special steel's hardness allows it to effectively withstand the extreme pressures and forces involved in these processes. This hardness also helps in retaining the sharpness of the cutting edges for extended periods, ensuring consistent and precise performance. Furthermore, special steel exhibits excellent wear resistance. Tooling applications typically involve repetitive and abrasive actions, which can cause considerable wear and tear on the tools. However, special steel's resistance to wear ensures that the tools maintain their performance and longevity, reducing the need for frequent replacements and downtime. Another important aspect of special steel is its excellent toughness. Tooling applications often subject the tools to sudden impacts and shock loads. Special steel's toughness enables it to absorb these impacts without fracturing or breaking, making it highly reliable and durable in such applications. Additionally, special steel offers good heat resistance and dimensional stability. Tooling applications often involve high temperatures, and special steel's ability to withstand heat prevents it from losing its hardness and other mechanical properties. This ensures consistent performance and dimensional stability, resulting in accurate and precise tooling. Lastly, special steel is also known for its corrosion resistance. Tooling applications may involve exposure to moisture, chemicals, or harsh environments, which can lead to corrosion and degradation of the tools. Special steel's corrosion resistance protects the tools from these corrosive elements, prolonging their lifespan and maintaining their performance. In conclusion, special steel is highly effective in tooling applications due to its hardness, wear resistance, toughness, heat resistance, dimensional stability, and corrosion resistance. These properties allow special steel tools to withstand the demanding conditions of tooling applications, ensuring reliable and long-lasting performance.
Q:Can special steel be used in the paper manufacturing industry?
Yes, special steel can be used in the paper manufacturing industry. It is commonly used for the construction of machinery and equipment such as rollers, blades, and cutting tools, due to its high strength, durability, and resistance to wear and corrosion. Special steel can also be used for the production of paper mill rolls, which are essential for the processing and production of paper.
Q:What are the cost considerations when using special steel?
When utilizing special steel, there are several factors to consider in terms of cost. To begin with, the cost of the raw materials required for the production of special steel can be significantly higher compared to regular steel. Special steel often incorporates alloying elements like chromium, nickel, or molybdenum, which tend to be more costly than the iron and carbon used in regular steel production. These alloying elements enhance the properties of the steel, resulting in increased strength, greater resistance to corrosion, or improved suitability for specific applications. Furthermore, the production process for special steel may entail additional steps or specialized equipment, leading to higher manufacturing costs. This can involve procedures like vacuum degassing, controlled cooling, or precision forging, all of which contribute to the quality and performance of the final product but also add to the overall expenses. Moreover, since special steel is often customized to meet specific requirements or industry standards, there may be additional costs associated with testing and certification. These can include non-destructive testing, material analysis, or third-party inspections to ensure compliance with the necessary specifications. These additional quality control measures can raise the overall cost of utilizing special steel. Lastly, the cost of special steel can also be influenced by its demand and availability. If there is high demand for certain types of special steel or if the supply is limited, prices may be driven up. This can be particularly pertinent to industries that rely on specialized steel grades such as aerospace, automotive, or oil and gas. In conclusion, the cost considerations when using special steel encompass the higher cost of raw materials, the additional manufacturing steps, the requirements for testing and certification, and the overall dynamics of supply and demand in the market. However, it is important to note that the benefits and advantages of employing special steel, such as improved performance, durability, or specific properties, often outweigh the higher costs, making it a worthwhile investment for many industries.
Q:What is the role of heat treatment in special steel?
Enhancing the properties and performance of special steel is of utmost importance, and heat treatment plays a vital role in achieving this. Special steel refers to alloys that are deliberately designed to possess unique characteristics such as high strength, corrosion resistance, or heat resistance. To alter the microstructure of the steel and attain the desired properties, heat treatment involves subjecting it to controlled heating and cooling processes. Improving the mechanical properties of special steel is one of the primary functions of heat treatment. By carefully regulating the temperature during heating and controlling the rate of cooling, the steel's hardness, strength, and toughness can be greatly enhanced. For instance, procedures like quenching and tempering significantly increase the steel's strength and resistance to wear and fatigue. This makes it suitable for applications requiring high strength and durability, such as machinery, tools, or aerospace components. Heat treatment also plays a crucial role in optimizing the steel's resistance to corrosion. Special steel is frequently used in environments where it is exposed to harsh conditions like corrosive chemicals or high temperatures. By subjecting the steel to specific heat treatment processes like annealing or precipitation hardening, a more stable microstructure is developed, improving its resistance to corrosion and oxidation. This ensures that the special steel retains its structural integrity and performance even in challenging environments. Furthermore, heat treatment can modify the steel's heat resistance properties. Special steel often finds applications in industries where it is exposed to high temperatures, such as turbines or exhaust systems. Through heat treatment techniques like normalization or hardening, the steel can be made more resistant to deformation, cracking, or softening at elevated temperatures. This allows the special steel to maintain its strength and structural integrity even under extreme heat conditions. To summarize, heat treatment is crucial in optimizing the mechanical, corrosion resistance, and heat resistance properties of special steel. By carefully manipulating the steel's microstructure through controlled heating and cooling processes, heat treatment enhances its strength, durability, and performance, making it suitable for a wide range of demanding applications.
Q:What are the main advantages of using special steel in the automotive racing industry?
The main advantages of using special steel in the automotive racing industry include its high strength-to-weight ratio, superior durability, and improved performance. Special steel alloys offer increased tensile strength and toughness, allowing for lighter and more rigid components, which contribute to higher speeds and improved handling. Additionally, special steel's resistance to wear and fatigue ensures better reliability and longevity of critical parts, reducing the risk of failures and costly repairs.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords