• Auto Climbing Bracket ACB-100 & ACB-50 for formwork and scaffolding systems System 1
  • Auto Climbing Bracket ACB-100 & ACB-50 for formwork and scaffolding systems System 2
Auto Climbing Bracket ACB-100 & ACB-50 for formwork and scaffolding systems

Auto Climbing Bracket ACB-100 & ACB-50 for formwork and scaffolding systems

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m²
Supply Capability:
1000 m²/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Auto-climbing Bracket ACB100 & ACB50


The power of the auto-climbing formwork is the hydraulic system, which includes the oil cylinder

and two commutators. The commutators can control the climbing of climbing rail and the bracket.

The steel rail and the bracket can inter-climbing, so the whole system will climb up steadily.

Cranes are not needed during the construction. It’s easy to operate, highly efficient and safe. It’s

the best choice for the construction of high buildings and bridges.

There are mainly two types of standard auto-climbing brackets, ACB-50 and ACB-100, the figure

means the push power of cylinder with unit of KN.


Characteristics:

◆ Perfect load bearing anchor system

Anchor system is the most important supporting part. The system is made of five parts shown

below. Thereinto, tensile bolt, V-climbing cone and washer can be taken out for reusing after the

concrete pouring finished.There are two kinds of anchor systems,A & B. A is matched with single

anchor shoe and B is matched with double anchor shoe.

◆ Crane-independent

Crane-independent forming, striking and climbing speeds up the work procedures on the

construction site and also makes them independent of each other. This means the planned

sequences can be maintained along with guaranteeing high productivity levels. The crane can

therefore be used for other tasks.

Hydraulic system is mainly made of two commutators,

oil cylinder and power distribution system.The

commutators can control the climbing of climbing rail

and bracket.

◆ High bearing capacity and safe

The stable working platforms are able to carry large loads, e.g. the storage of reinforcing steel

for the next climbing section. Generously-sized working platforms, the well thought-out design for

handling very high wind loads and the patented control function of the climbing mechanism are

some of the special details contained within the comprehensive safety concept.

◆ Platforms adjusted to suit the angle of inclination

The horizontal working areas thus created provide safe and comfortable conditions for

reinforcement work, shuttering and striking, concreting and finishing.

◆ The ACB formwork system can climb not only vertically but also slantways, the largest angle is

18 degrees.

◆ The system can climb up wholly or separately. The climbing process is steady, synchronous

and safe.

◆ The bracket will not fall to the ground until the construction is finished, the field will be saved

and the impacting breakage will be reduced (especially the panel).

◆ The system will furnish omnidirectional platform, the construction organizations don’t need to

set up additional operation platform.

◆ The error of structure construction is small and easy to correct.

◆ The climbing speed is fast, the construction course will be quickened.

◆ The formwork can climb itself and cleaning work can be done in the same situs , the used times

of tower crane will be greatly reduced.


Q:Can steel formwork be used for architectural concrete beams?
Indeed, architectural concrete beams can be constructed using steel formwork. The utilization of steel formwork yields numerous benefits in contrast to conventional wooden formwork. These advantages encompass enhanced longevity and the ability to be reused. Steel formwork stands as a sturdier and more inflexible alternative, facilitating the meticulous and precise construction of architectural concrete beams. Furthermore, it delivers a sleek and uniform surface finish, a crucial element in attaining the desired aesthetic appeal of the beams. Moreover, the assembly, disassembly, and transportation of steel formwork can be effortlessly executed, rendering it a pragmatic option for the construction of architectural concrete beams.
Q:Those who have these drawings, can send a copy to me, online, etc.
As long as the designer noted that the length of the beam, and the design of the whole number of expansion joints, there is a good design of the template.
Q:How does steel formwork handle different concrete surface sealing products?
Steel formwork handles different concrete surface sealing products quite well. Steel is a durable and strong material that can withstand the application of various sealing products without significant issues. It provides a solid and stable surface for the concrete to be poured against, allowing for proper adhesion and curing of the sealing products. Additionally, steel formwork can be easily cleaned and prepared for the application of different sealing products, making it a versatile choice for construction projects.
Q:Are there any health concerns associated with steel formwork?
Yes, there are potential health concerns associated with steel formwork. These concerns mainly revolve around the use of hazardous chemicals such as paints, coatings, or sealants that may contain volatile organic compounds (VOCs). Prolonged exposure to these VOCs can lead to respiratory issues and other health problems. Additionally, the handling of heavy steel formwork components can pose risks of musculoskeletal injuries if proper safety measures are not followed. It is important to ensure proper ventilation, use protective gear, and follow safety guidelines to mitigate these health concerns.
Q:How is steel formwork assembled?
Steel formwork, also known as steel shuttering, is a popular choice for construction projects due to its durability and reusability. The assembly process of steel formwork involves a series of steps to ensure a secure and stable structure. Firstly, the steel formwork panels are laid out on the construction site in the desired configuration. These panels are typically made of high-quality steel and come in various sizes and shapes to accommodate different project requirements. Next, the panels are interconnected using different types of fastening systems, such as clamps, bolts, or pins. This ensures that the formwork remains rigid and stable during concrete pouring and curing. The fastening system used may vary depending on the specific design and requirements of the project. Once the panels are securely connected, adjustable props or braces are installed to provide additional support and stability to the formwork. These props are usually made of steel and can be adjusted in height to accommodate different concrete pouring heights. After the formwork structure is assembled and properly supported, it is ready for concrete pouring. The formwork acts as a mold, containing the fresh concrete until it hardens and gains sufficient strength. The concrete is poured into the formwork using pumps or buckets, and then it is vibrated or compacted to eliminate air pockets and ensure proper adhesion. Once the concrete has cured and gained sufficient strength, the formwork is carefully dismantled. The dismantling process involves removing the props, unfastening the panels, and carefully disassembling the formwork structure. The dismantled steel formwork can then be cleaned, inspected, and reused for future construction projects, making it a cost-effective and sustainable choice. Overall, the assembly of steel formwork involves laying out and connecting the steel panels, installing adjustable props for support, pouring concrete, and finally dismantling the formwork structure. This process ensures a robust and stable formwork system that facilitates efficient and high-quality concrete construction.
Q:What are the common challenges faced during steel formwork removal?
One of the common challenges faced during steel formwork removal is the difficulty in disassembling the formwork due to the tight connections and fasteners used in its construction. Steel formwork is designed to provide a rigid structure, and as a result, it can be challenging to remove without the proper tools and techniques. Another challenge is the weight of the steel formwork. Steel is a heavy material, and when used in formwork, it can make the removal process physically demanding. Proper lifting equipment and techniques are required to safely remove the formwork without causing any injuries to the workers. Corrosion can also be a challenge during steel formwork removal. Over time, steel formwork can be exposed to moisture, which can lead to rust and corrosion. This can make the formwork more difficult to dismantle, as the rusted parts may be stuck together or weakened. Proper maintenance and regular inspections can help prevent or identify corrosion early on, reducing the challenges during removal. Additionally, the presence of concrete residue can pose challenges during steel formwork removal. Concrete can adhere to the formwork, making it difficult to separate the two. This can be time-consuming and may require additional tools or methods, such as chipping or using release agents, to facilitate the removal process. Lastly, the coordination and timing of the formwork removal can be a challenge. Removing the formwork too early can result in structural instability, while removing it too late can cause delays in subsequent construction activities. Proper planning and communication between the construction team are crucial to ensure the formwork removal is done at the right time and in the correct sequence. In conclusion, the common challenges faced during steel formwork removal include tight connections and fasteners, the weight of the formwork, corrosion, concrete residue, and coordination and timing. Overcoming these challenges requires proper tools, techniques, maintenance, and effective communication among the construction team.
Q:How does steel formwork handle concrete pump pressure?
Steel formwork is highly durable and strong, allowing it to effectively handle concrete pump pressure. Its robust structure and rigidity help distribute and withstand the force exerted by the concrete pump, ensuring that the formwork maintains its shape and integrity during the pouring process. This enables the steel formwork to effectively contain and support the concrete, resulting in a successfully executed construction project.
Q:What are the common quality control measures for steel formwork?
Steel formwork undergoes several quality control measures to ensure its compliance with standards and specifications: 1. Thoroughly inspect the steel formwork for visible defects or damage, such as cracks, dents, or deformations, and address them accordingly. 2. Measure the dimensions of the steel formwork, including length, width, and height, and compare them to the specified requirements. Correct any deviations from the required dimensions. 3. Conduct material testing to verify that the steel formwork meets the necessary standards and specifications. This includes testing its tensile strength, yield strength, hardness, and chemical composition. 4. Inspect the quality of welds if the steel formwork is welded. Check for proper penetration, fusion, and the absence of defects like cracks or porosity. Employ non-destructive testing methods like ultrasonic or radiographic testing to ensure the integrity of the welds. 5. Inspect the surface coating, such as paint or galvanized coating, for thickness, adhesion, and uniformity. This guarantees protection against corrosion and enhances the durability of the formwork. 6. Subject the steel formwork to load testing to evaluate its structural integrity and load-bearing capacity. Apply a known load and monitor the formwork's response to ensure it can safely support the required loads during construction. 7. Document and maintain records of the quality control measures for future reference. This includes recording inspection results, material test reports, and any corrective actions taken. By implementing these quality control measures, the steel formwork can meet the necessary standards, specifications, and safety regulations, ensuring its structural integrity and performance during construction.
Q:Can steel formwork be used for underwater concrete structures?
Yes, steel formwork can be used for underwater concrete structures. Steel is a durable and strong material that can withstand the pressure and corrosive effects of water. It provides a reliable support system for pouring and shaping concrete in underwater conditions, ensuring the stability and integrity of the structure.
Q:What are the different types of formwork connectors used in steel formwork?
There are several different types of formwork connectors used in steel formwork, including wedge clamps, wedge bolts, pin and wedge systems, and snap ties. These connectors are essential for securely joining formwork panels together and ensuring the stability and strength of the formwork structure.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products