• 20MnCr5 42CrMo4 4340 Alloy Steel Round Bar System 1
  • 20MnCr5 42CrMo4 4340 Alloy Steel Round Bar System 2
  • 20MnCr5 42CrMo4 4340 Alloy Steel Round Bar System 3
20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar

20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

Product Information:

1.Grade: 20MnCr5 42CrMo4 4340
2.Dia:12-300mm
3.Length:3-12m
4.Hot rolled
5.MOQ: 30mt per size

Product Overviews:

Product NameTypical GradesDiameter(mm)Standard adopted
Carbon Steel20 (1020/S20C/C22)Ø16-Ø300GB/SAE/JIS/DIN
40 (1040/S40C/C40)
45 (1045/S45C/C45)
Bearing SteelGCr9 (51100/SUJ1)Ø12-Ø250
GCr15 (52100/SUJ2/100Gr6)
GCr9SiMn (A485-Gr.1/SUJ3)
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4)Ø12-Ø250
40Cr (5140/SCr440/41Cr4)
42CrMo(4140/SCM440/42CrMo4)
Gear Steel20CrNiMoØ16-Ø600
20CrMn(5115/SMnC420/20MnCr5)
20CrNiMo(8620/SNCM220/20CrMiMo2)

Product Show:

20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

Our Advantages:

· Industry experience over 20 years.

· Shipment of goods -More than 70 countries worldwide.

· The most convenient transport and prompt delivery.

· Competitive price with best service.

· High technical production line with top quality products.

· High reputation based on best quality products.

 

With our experienced, enthusiastic and dynamic staffs, we assure to bring you the products with best quality, reasonable prices and good after-sales services under the motto: Friends First, Business After.

Communication, Experience, Expertise and Best efforts are our Promises to you.


Q:What are the different methods for improving the corrosion resistance of stainless special steel?
There are several methods for improving the corrosion resistance of stainless special steel. Some of the common methods include alloying the steel with elements such as chromium, nickel, and molybdenum, which enhance its resistance to corrosion. Another method is passivation, which involves treating the steel with an acid solution to remove any surface contaminants and create a protective oxide layer. Coating the steel with materials like paint, powder coating, or electroplating can also improve its corrosion resistance. Additionally, proper cleaning and maintenance practices, such as regular removal of dirt and debris, can help prevent corrosion and maintain the steel's resistance over time.
Q:What are the corrosion resistance properties of special steel?
Special steel has excellent corrosion resistance properties due to the addition of specific alloying elements such as chromium, nickel, and molybdenum. These alloying elements create a protective layer on the surface of the steel, preventing the material from reacting with its surrounding environment. This makes special steel highly resistant to corrosion, even in harsh conditions such as exposure to chemicals, moisture, and high temperatures. Additionally, special steel can retain its corrosion resistance properties over long periods, making it a reliable choice for various applications in industries such as construction, automotive, and aerospace.
Q:What are the properties of duplex stainless steel?
Duplex stainless steel is known for its excellent combination of corrosion resistance and high strength. It has a two-phase microstructure consisting of equal amounts of ferrite and austenite, which provides it with superior toughness and resistance to stress corrosion cracking. Additionally, duplex stainless steel offers good resistance to pitting and crevice corrosion, making it suitable for use in various harsh environments. It also exhibits good weldability and is highly durable, making it a popular choice in applications such as chemical processing, oil and gas industries, and marine environments.
Q:What are the main applications of special steel in the agricultural sector?
Special steel has various applications in the agricultural sector, primarily in the manufacturing of machinery and equipment. It is used in the production of durable and high-strength components such as plows, tillers, harvesters, and irrigation systems. Special steel's properties, including corrosion resistance and ability to withstand harsh conditions, make it ideal for constructing farm implements that can withstand the demands of agricultural operations. Additionally, special steel is used in the manufacturing of storage tanks, silos, and structures, ensuring the longevity and reliability of agricultural infrastructure.
Q:What are the different surface coating methods used for special steel?
There are several surface coating methods used for special steel, including electroplating, hot-dip galvanizing, powder coating, and PVD (Physical Vapor Deposition) coating. Each method provides unique properties such as corrosion resistance, improved aesthetics, and enhanced durability, depending on the specific requirements of the steel application.
Q:What are the main characteristics of structural steel forgings?
The main characteristics of structural steel forgings include high strength, excellent toughness, and superior fatigue resistance. They are also known for their ability to withstand extreme temperatures and harsh environments. Moreover, structural steel forgings exhibit good weldability and machinability, making them suitable for various engineering applications.
Q:How is wear-resistant steel used in mining equipment?
Wear-resistant steel is commonly used in mining equipment to increase its durability and prolong its lifespan. It is utilized in various components such as buckets, blades, and hammers, which are subjected to intense abrasion and impact during mining operations. By incorporating wear-resistant steel, these equipment parts can withstand the harsh conditions and abrasive materials encountered in mining, reducing the need for frequent repairs or replacements and ensuring continuous productivity.
Q:How does special steel contribute to the energy storage sector?
Special steel plays a crucial role in the energy storage sector by providing essential components for various energy storage systems. One significant application of special steel is in the manufacturing of batteries, which are essential for storing energy in various forms. Special steel is ideal for battery casings and frames due to its high strength, excellent corrosion resistance, and durability. Battery casings made from special steel can withstand high pressures and protect the internal components from external impacts, ensuring the safety and reliability of the entire energy storage system. Furthermore, special steel is utilized in the production of electrodes, a critical component of batteries. Electrodes require materials that can efficiently conduct electricity while enduring repeated charge and discharge cycles. Special steel, such as stainless steel, possesses excellent electrical conductivity and can withstand the demanding conditions within batteries, making it an ideal choice for electrode manufacturing. Additionally, special steel is employed in the construction of infrastructure for energy storage systems. Steel structures are used to support large-scale energy storage devices like pumped hydro storage facilities and compressed air energy storage systems. These structures must be strong, durable, and resistant to environmental conditions. Special steel provides the necessary strength and corrosion resistance to ensure the longevity and reliability of these energy storage infrastructure projects. In summary, special steel contributes significantly to the energy storage sector by providing essential components for batteries, such as casings and electrodes. It also plays a vital role in the construction of infrastructure for energy storage systems. With its exceptional properties, special steel enhances the safety, efficiency, and durability of energy storage technologies, thereby facilitating the growth and advancement of the renewable energy sector as a whole.
Q:How is special steel used in the aerospace sector?
Special steel is extensively used in the aerospace sector due to its unique properties that make it suitable for various applications. One of the primary uses of special steel in the aerospace industry is for manufacturing aircraft engine components. These components, such as turbine blades, shafts, and casings, are subjected to extremely high temperatures, pressures, and stresses. Special steel, with its excellent heat resistance, high strength, and superior mechanical properties, enables these engine parts to withstand such harsh conditions, ensuring optimal performance and safety. Moreover, special steel is also utilized in the construction of aircraft structures, including wings, fuselage, landing gears, and other critical components. These structures need to be lightweight, yet strong enough to withstand the forces experienced during flight. Special steel alloys, such as stainless steel, are used to achieve this balance by providing excellent strength-to-weight ratios and corrosion resistance. Additionally, special steel finds application in aerospace fasteners, such as bolts, nuts, and screws. These fasteners must have exceptional strength and durability to ensure the structural integrity of the aircraft. Special steel alloys, like titanium alloys, are commonly used in this regard due to their lightweight nature, high strength, and resistance to corrosion. Furthermore, special steel is utilized in the production of aerospace tooling and equipment. These tools, such as molds, dies, jigs, and fixtures, need to be robust, wear-resistant, and capable of withstanding high temperatures and pressures during manufacturing processes. Special steel, with its excellent hardness, toughness, and heat resistance, makes it ideal for such applications. In summary, special steel plays a critical role in the aerospace sector by providing the necessary properties required for aircraft engine components, structures, fasteners, and tooling. Its unique characteristics of high strength, heat resistance, lightweight, and corrosion resistance make it an indispensable material in the production of reliable and high-performance aerospace systems.
Q:What are the different nuclear grades of special steel?
Special steel grades with different nuclear classifications are utilized in the nuclear industry to adhere to strict safety, reliability, and performance standards. These grades are engineered to endure the challenging conditions present in nuclear power plants and other nuclear facilities. There exist various nuclear grades of special steel, each possessing distinct characteristics and applications. Some commonly utilized grades include: 1. 304/304L stainless steel: This grade boasts exceptional resistance to corrosion and high strength at elevated temperatures, making it widely employed in nuclear applications. It finds use in the fabrication of reactor vessels, heat exchangers, and piping systems. 2. 316/316L stainless steel: Similar to 304/304L, this grade offers superior resistance to corrosion and high creep strength. It is commonly employed in the construction of components exposed to corrosive environments, such as coolant systems, steam generators, and fuel handling equipment. 3. 321 stainless steel: This grade contains titanium, which stabilizes the steel during welding to prevent sensitization. It frequently finds application in nuclear scenarios involving welding, such as piping systems and pressure vessels. 4. Duplex stainless steels: These grades, including 2205 and 2507, combine high strength with excellent corrosion resistance. They are frequently employed in nuclear applications that involve highly corrosive environments, such as seawater-cooled systems and containment structures. 5. Low alloy steels: These steels, such as A533B and A508, are used in the construction of reactor pressure vessels due to their exceptional strength and toughness. These grades are specifically designed to withstand the extreme conditions within a nuclear reactor. It is crucial to consider specific factors such as temperature, pressure, corrosion resistance, and mechanical properties when selecting the appropriate nuclear grade of special steel for a given application. Rigorous testing and quality control measures are implemented to ensure the suitability of these grades for use in the nuclear industry.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords