• 60W Solar Home Solution Approved by TUV UL CE System 1
  • 60W Solar Home Solution Approved by TUV UL CE System 2
60W Solar Home Solution Approved by TUV UL CE

60W Solar Home Solution Approved by TUV UL CE

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1 pc
Supply Capability:
100 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Application:
Home
Output Voltage (V):
220
Work Time (h):
24

60W Solar Home Solution Approved by TUV UL CE

 

Production description

 

PV array:
Convert sunlight instantly into DC electric power. Formed by the solar modules (also called photovoltaic
modules) in accordance with the system requirements for series and parallel.
Solar charge controller:
A charge controller may be used to power DC equipment with solar panels. The charge controller
provides a regulated DC output and stores excess energy in a battery as well as monitoring the battery
voltage to prevent over charge or over discharge. An inverter can be connected to the output of a charge
controller to drive AC loads.
Inverter:

Converts DC output power of photovaltaic soalr panels into standard AC power for use in the local off-grid
electrical network. It is a critical component in a photovoltaic system, allowing the use of ordinary
commercial appliances.
Battery banks:
Stores energy when there is an excess coming in and distribute it back out when there is a demand. Solar
PV panels continue to re-charge batteries each day to maintain battery charge.

60W Solar Home Solution Approved by TUV UL CE


 

Physical characteristic

 

1. Rigorous quality control meets the highest international standards.

2. High-transmissivity low-iron tempered glass, strong aluminium frame.

3. Using UV-resistant silicon.

4. IS09001/14001/CE/TUV/UL  

 

Q:Are solar energy systems cost-effective?
Yes, solar energy systems are cost-effective in the long run. While the initial installation cost may be higher, solar power helps reduce electricity bills significantly over time. Additionally, solar energy systems require minimal maintenance, have a long lifespan, and can generate excess energy that can be sold back to the grid, further enhancing their cost-effectiveness.
Q:Do solar energy systems require a battery for storage?
No, solar energy systems do not necessarily require a battery for storage.
Q:What is the impact of roof orientation on the performance of solar panels?
The impact of roof orientation on the performance of solar panels is significant and can greatly affect their overall efficiency and energy generation. The orientation of the roof refers to the direction in which it faces, whether it is towards the south, east, west, or north. Ideally, solar panels perform best when they are installed on a roof that faces south, as it allows them to receive the maximum amount of sunlight throughout the day. South-facing roofs receive direct sunlight for the longest duration, which means the solar panels can capture more solar energy. If the roof faces east or west, the solar panels will still receive sunlight, but their energy generation may be reduced. East-facing roofs receive morning sunlight, which is beneficial in regions where there is a higher demand for electricity during the morning hours. However, the overall energy production may be lower compared to south-facing roofs, as they do not receive sunlight for the entire day. Similarly, west-facing roofs receive afternoon sunlight, which may be advantageous in areas with a higher electricity demand during the afternoon. North-facing roofs generally have the least favorable orientation for solar panels. They receive the least amount of direct sunlight and, as a result, have lower energy generation potential. In regions with a predominantly northern orientation, solar panels may not be the most efficient or cost-effective solution for renewable energy generation. Apart from orientation, the angle of the roof, known as the tilt, also plays a role in solar panel performance. The ideal tilt angle for solar panels is typically determined based on the latitude of the location. Adjusting the tilt angle can optimize the solar panel's exposure to sunlight and maximize energy generation. In conclusion, roof orientation has a significant impact on the performance of solar panels. South-facing roofs offer the highest energy generation potential, while east, west, and north-facing roofs may have varying levels of efficiency. Considering the orientation and tilt of the roof is crucial when installing solar panels to ensure optimal energy production and maximize the benefits of solar power.
Q:What is the impact of electromagnetic interference on solar energy system performance?
Electromagnetic interference can have a negative impact on the performance of solar energy systems. It can disrupt the communication and control signals within the system, leading to reduced efficiency and functionality. Additionally, electromagnetic interference can introduce noise and disturbances in the power output, affecting the overall reliability and stability of the system. Therefore, proper shielding and mitigation techniques need to be implemented to minimize the impact of electromagnetic interference on solar energy system performance.
Q:Can solar energy systems be used in areas with limited access to solar energy consultants?
Yes, solar energy systems can still be used in areas with limited access to solar energy consultants. While it may be challenging to have professional assistance, there are resources available online, guides, and tutorials that can help individuals and communities in these areas understand and set up solar energy systems. Additionally, some companies offer remote consultations and support services, making it possible to overcome the limitations of physical access to solar energy consultants.
Q:How long does it take for a solar energy system to pay for itself?
The payback period for a solar energy system varies depending on various factors such as the initial cost, energy usage, local solar incentives, and financing options. On average, it typically takes around 5 to 10 years for a residential solar energy system to pay for itself through energy savings. However, with decreasing installation costs and increasing energy prices, the payback period is often shorter nowadays. Additionally, commercial and utility-scale solar systems may have different payback periods due to their larger scale and potential tax benefits.
Q:Can solar energy systems be used in areas with limited access to cultural resources?
Yes, solar energy systems can be used in areas with limited access to cultural resources. Solar energy systems are not dependent on cultural resources such as historical structures or artifacts. They can be implemented in any location as long as there is access to sunlight. Therefore, areas with limited cultural resources can still benefit from solar energy as an alternative and sustainable source of power.
Q:Can solar energy systems be used in urban areas?
Yes, solar energy systems can be used in urban areas. In fact, urban areas provide several advantages for solar energy systems, including available rooftops and vertical surfaces for solar panel installation, a dense population that can benefit from renewable energy, and reduced transmission losses due to shorter distances between energy generation and consumption. Additionally, advancements in solar technology have made it possible to integrate solar panels into various urban infrastructure, such as streetlights, bus shelters, and building facades, making solar energy systems a viable and sustainable solution in urban environments.
Q:Can solar energy systems be used in areas with limited roof space due to chimneys or vents?
Yes, solar energy systems can still be used in areas with limited roof space due to chimneys or vents. In such cases, alternative installation options like ground-mounted solar panels, solar canopies, or solar pergolas can be considered. These options allow for the utilization of unused land or outdoor spaces to generate solar energy, making it possible to harness solar power even in areas with limited roof space.
Q:Can solar energy systems be installed on sports stadiums?
Yes, solar energy systems can be installed on sports stadiums. Many sports stadiums around the world have successfully implemented solar energy systems to generate renewable and clean electricity. These systems are typically installed on the roofs of stadiums or in nearby open areas to maximize sunlight exposure. By harnessing solar power, sports stadiums can reduce their reliance on fossil fuels, lower their carbon footprint, and contribute to a more sustainable future.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords