• T Type Ductile Iron Pipe DN200  C40 CLASS SOCKET SPIGOT PIPE System 1
T Type Ductile Iron Pipe DN200  C40 CLASS SOCKET SPIGOT PIPE

T Type Ductile Iron Pipe DN200 C40 CLASS SOCKET SPIGOT PIPE

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t
Supply Capability:
30000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification:

1) The standard of pipe: ISO2531:1998, EN545:2006K9 K8

2) Effective length: 6m/5.7m

3) Inner cement line: Portland cement lineas per ISO4179

4) Zinc coating: at least 130g/m2 as per ISO8179

5) Bitumen painting: at least 70μm as per ISO8179

6)With 102% quantity of NBR, SBR, or EPDM ring asper ISO4633

7) DN80-DN1200

8) Highstrength, lighter than grey iron, good corrosion resistance, no furring, smallflow resistance, easy fixing, long life tome about 100 yeas

9)Checked by automatic inspection equipment

10) Composition:

Chemical composition

Chemical composition

Ductile Cast Iron  Pipe (%)

Grey iron pipe (%)

Steel pipe (%)

C

3.5-4.0

3.2-3.8

0.1-0.2

Si

1.9-2.6

1.4-2.2

0.15-0.4

Mn

0.15-0.45

0.4-0.6

0.3-0.6

P

0.06

0.3

0.02-0.03

S

0.02

0.1

0.02-0.03

Mg

0.03-0.06

 

 

11) Feature:

Mechanical  properties

 

Ductile Cast Iron  Pipe

Grey Iron Pipe

Steel Pipe

Tensile  Strength(Mpa)

420

150-260

400

Yield Strength(Mpa)

300

No Confirmation

No Confirmation

Bending  Strength(Mpa)

590

200-360

400

Elongation (%)

10

Neglected

18

Brinell  Hardness(HBS)

≤230

230

About 140

12) T type mechanical joint

13) Packing: in bulk or container

PACKING: 1) Pipesare bundled together with the steel belt.

2) Wooden pieces are put between the pipes.


Q:How are ductile iron pipes protected against internal corrosion caused by chemicals?
Ductile iron pipes are protected against internal corrosion caused by chemicals through a combination of several protective measures. Firstly, these pipes are usually lined with a cement mortar lining or an epoxy coating. This lining acts as a barrier between the chemical substances in the water or sewage and the iron material of the pipe, preventing direct contact and corrosion. In addition to the lining, a corrosion-resistant polymer or bituminous coating is often applied to the exterior of the ductile iron pipes. This coating serves as an extra layer of protection, safeguarding the pipe against any external chemical exposure that may occur. Furthermore, cathodic protection is commonly employed to prevent internal corrosion. This technique involves the use of sacrificial anodes, typically made of zinc or magnesium, which are attached to the pipe. The anodes corrode over time instead of the iron, effectively sacrificing themselves to protect the pipe from corrosion caused by chemicals. Regular maintenance and monitoring of the ductile iron pipes are also crucial in preventing and addressing any potential corrosion issues. This includes routine inspections, cleaning, and repairing any damaged or corroded areas promptly. Overall, the combination of lining, external coating, cathodic protection, and maintenance practices ensures that ductile iron pipes are well-protected against internal corrosion caused by chemicals, prolonging their lifespan and ensuring the integrity of the pipeline system.
Q:How does ductile iron pipe perform in areas with high seismic activity?
Ductile iron pipe performs well in areas with high seismic activity due to its inherent flexibility and strength. Its ability to withstand ground movement and absorb seismic forces makes it a reliable choice for underground piping systems in earthquake-prone regions. Additionally, the material's high tensile strength and resilience help it resist fractures and maintain its structural integrity during seismic events, ensuring the continuous flow of water or other fluids.
Q:How does ductile iron pipe perform in areas with high groundwater levels?
Ductile iron pipe proves to be highly effective in areas characterized by elevated groundwater levels. A notable advantage of this type of pipe lies in its resistance to corrosion, rendering it particularly suitable for underground applications and areas with high water tables. Unlike alternative materials, ductile iron pipe remains impervious to rust or corrosion caused by groundwater, ensuring its longevity and durability. Moreover, ductile iron pipe is distinguished by its exceptional strength and flexibility, enabling it to withstand the external pressure exerted by high groundwater levels. It effectively resists the buoyant forces exerted by water, thereby preventing any displacement or flotation. Furthermore, the joints of ductile iron pipe are tightly sealed, thus preventing any infiltration of groundwater into the pipe system. This guarantees the absence of leaks or water supply contamination, which is of utmost importance in areas with high groundwater levels. All in all, ductile iron pipe emerges as the optimal choice for areas with high groundwater levels due to its corrosion resistance, strength, and ability to maintain a secure and tightly sealed system. It provides a dependable and long-lasting solution for water distribution and sewer systems, even in challenging environments.
Q:What is the ductile cast iron pipe
Should not have this conceptI make the ductile iron pipe, haven't heard of this thing only ductile iron pipe, ductile cast iron heard tube
Q:Are ductile iron pipes suitable for installation in areas with high traffic loads?
Yes, ductile iron pipes are suitable for installation in areas with high traffic loads. Due to their inherent strength and durability, ductile iron pipes can withstand heavy loads and are commonly used in applications where there is significant vehicular traffic.
Q:What is the maximum allowable joint deflection for ductile iron pipes?
The maximum allowable joint deflection for ductile iron pipes is typically specified by industry standards and guidelines. These standards may vary depending on the specific application and local regulations. In general, the maximum allowable joint deflection for ductile iron pipes is usually limited to a range between 1% to 5% of the pipe diameter. This means that the pipe can typically tolerate a deflection of up to 1% to 5% of its diameter without causing any significant damage or compromising its structural integrity. However, it is important to note that the exact maximum allowable joint deflection may vary depending on factors such as pipe size, wall thickness, and operating conditions. It is recommended to consult the relevant industry standards, such as those published by the American Water Works Association (AWWA) or the International Organization for Standardization (ISO), for specific guidelines on maximum allowable joint deflection for ductile iron pipes in a given application.
Q:How does ductile iron pipe perform in high-velocity flow conditions?
Ductile iron pipe performs exceptionally well in high-velocity flow conditions. Due to its unique properties, including high tensile strength and impact resistance, ductile iron pipe can withstand the forces exerted by high-velocity flows without experiencing significant damage or failure. One of the key advantages of ductile iron pipe is its ability to resist the effects of water hammer, which is a sudden increase in pressure caused by the rapid deceleration or change in direction of water flow. This is particularly important in high-velocity flow conditions where the velocity of water is significantly higher than normal. Ductile iron pipes are designed to absorb and dissipate the energy generated by water hammer, preventing potential damage to the pipe and the surrounding infrastructure. Additionally, ductile iron pipe has excellent flow characteristics, allowing for smooth and efficient water transport even at high velocities. This is crucial in applications where a large volume of water needs to be transported quickly, such as in industrial processes or fire protection systems. The smooth interior surface of ductile iron pipe minimizes friction and pressure losses, ensuring that the water can flow freely and efficiently, reducing energy consumption and operating costs. Moreover, ductile iron pipe is highly resistant to corrosion, which is a common issue in high-velocity flow conditions where the water may contain aggressive chemicals or particulates. The protective lining and coating systems used in ductile iron pipes provide a barrier against corrosion, extending the lifespan of the pipe and maintaining its structural integrity. In summary, ductile iron pipe is well-suited for high-velocity flow conditions due to its ability to withstand water hammer, its excellent flow characteristics, and its resistance to corrosion. Its strength, durability, and reliable performance make it a preferred choice for various applications, ensuring efficient water transport even in demanding environments.
Q:How do ductile iron pipes handle cyclic loading in offshore applications?
Ductile iron pipes are known for their exceptional strength and durability, making them a suitable choice for various applications, including offshore use. When it comes to handling cyclic loading in offshore environments, ductile iron pipes have several characteristics that contribute to their performance. Firstly, ductile iron pipes have a high resistance to fatigue failure. Fatigue failure occurs when a material experiences repeated cycles of stress, which can cause cracks to initiate and propagate over time. Ductile iron pipes are designed to withstand cyclic loading without compromising their structural integrity, thanks to their inherent ductility and ability to absorb and distribute stress effectively. Additionally, ductile iron pipes possess excellent impact resistance. Offshore environments are prone to dynamic and unpredictable forces, such as waves and currents, which can exert sudden and high impact loads on the pipes. The high impact resistance of ductile iron allows it to withstand these forces without deformation or fracture, ensuring the pipes remain intact and functional. Moreover, ductile iron pipes have a unique microstructure that enables them to resist corrosion. Offshore applications expose pipes to harsh environmental conditions, including saltwater, which can accelerate the corrosion process. However, the protective graphite matrix in ductile iron pipes acts as a barrier, preventing corrosive agents from reaching the underlying metal and significantly extending the pipes' service life. Furthermore, ductile iron pipes have a high load-carrying capacity. In offshore applications, pipes often need to support heavy loads, such as those from equipment, structures, or seabed settlements. Ductile iron's superior strength allows it to bear these loads effectively, maintaining the structural integrity and stability of the system. Lastly, ductile iron pipes offer ease of installation and maintenance. Their lightweight nature makes them easier to handle and transport during offshore operations. Additionally, their corrosion resistance minimizes the need for frequent maintenance, reducing downtime and costs associated with repairs and replacements. In conclusion, ductile iron pipes exhibit excellent performance in handling cyclic loading in offshore applications. Their resistance to fatigue failure, impact resistance, corrosion resistance, high load-carrying capacity, and ease of installation and maintenance make them a reliable and efficient choice for offshore environments.
Q:What is the average weight of ductile iron pipe?
The average weight of ductile iron pipe can vary depending on its size and thickness. Generally, ductile iron pipe ranges in weight from approximately 3.5 pounds per foot for smaller diameters to over 20 pounds per foot for larger diameters. It is important to note that these weights are approximate averages and can vary slightly based on specific manufacturers and pipe specifications.
Q:Luo what effect of ductile cast iron
Chromium is an anti graphitization element, which hinders the graphitization process of cast iron, increases the content of cementite (Fe3C) in the internal structure of cast iron, and stabilizes pearlite at the same time. It affects the mechanical and processing properties of nodular cast iron.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords