• Special Steel W6 High Speed Tool Steel Round Bar System 1
  • Special Steel W6 High Speed Tool Steel Round Bar System 2
Special Steel W6 High Speed Tool Steel Round Bar

Special Steel W6 High Speed Tool Steel Round Bar

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information

 

Chemical Composition(GB)%

StandardCSiMnPSCrWMoV
W6Mo5Cr4V20.55-0.65≤0.40≤0.60≤0.030≤0.0203.70-4.306.00-7.004.50-5.501.70-1.10
M20.78-0.880.20-0.450.15-0.40≤0.030≤0.0303.75-4.505.50-6.754.50-5.501.75-2.20

 

Heat Treatment

ItemTemperature℃Hardness
Anneal840-860≤255HB
Quenching1150-1180≥60HRC
Tempering560-580≥60HRC

  

Applications:Used for various tools,large thermoplastic forming cutting tools,abrasion resistance components operating under high load such as cold extrusion dies

Product show

.jpg

Workshop show

Special Steel W6 High Speed Tool Steel Round Bar

Q:How does special steel perform in chemical resistance applications?
Special steel is known for its exceptional performance in chemical resistance applications. Its composition and properties make it highly resistant to corrosion and damage caused by exposure to various chemicals. Special steel is made using alloys that contain elements like chromium, nickel, and molybdenum, which provide excellent resistance to acids, alkalis, and other corrosive substances. In chemical resistance applications, special steel offers several advantages. Firstly, it exhibits high resistance to pitting corrosion, which is the localized corrosion that occurs on the surface of metals. This makes it suitable for use in environments where chemicals can cause damage to the metal surface. Secondly, special steel has excellent resistance to crevice corrosion, which is the corrosion that occurs in confined spaces or gaps between metal surfaces. This property is particularly beneficial in chemical processing equipment, where tight joints and connections are common. Furthermore, special steel maintains its mechanical strength and integrity in harsh chemical environments. It can withstand high temperatures, pressure, and exposure to aggressive chemicals without compromising its structural integrity. This makes it extremely reliable and durable, ensuring a longer service life and reduced maintenance costs. Overall, special steel's exceptional chemical resistance properties make it a preferred choice for a wide range of applications. Whether it is used in chemical processing plants, pharmaceutical industries, or oil and gas refineries, special steel provides the necessary protection against corrosion and damage caused by chemicals. Its ability to withstand harsh environments and maintain its performance over time makes it an ideal material for chemical resistance applications.
Q:What are the main applications of special steel in the power generation sector?
Special steel is widely used in the power generation sector for various applications. Some of the main applications include turbine components, such as blades and rotors, which require high strength and temperature resistance to withstand the harsh operating conditions. Special steel is also used in the construction of boilers and pressure vessels, where its corrosion resistance and high tensile strength are essential. Additionally, special steel is utilized in the manufacturing of power transmission infrastructure, such as transmission lines and transformers, to ensure efficient and reliable electricity transfer. Overall, special steel plays a crucial role in enhancing the performance and longevity of power generation equipment in the industry.
Q:How does special steel contribute to the transportation equipment industry?
Special steel plays a crucial role in the transportation equipment industry in several ways. Firstly, special steel alloys are used to manufacture various components of vehicles, such as engine parts, suspension systems, and transmission components. These alloys offer superior strength, durability, and corrosion resistance, ensuring that the vehicles can withstand harsh operating conditions and have a longer lifespan. Moreover, special steel is also employed in the production of railway tracks and infrastructure, contributing to the efficiency and safety of the transportation system. The high-quality steel used in railway tracks ensures stability, reduces maintenance requirements, and enhances the overall performance of the railways. In addition, special steel is utilized in the manufacturing of aircraft components, where precision, reliability, and lightness are of utmost importance. Steel alloys with exceptional mechanical properties are employed in critical parts like landing gear, engine components, and structural elements, ensuring the safety and efficiency of air transport. Furthermore, special steel is vital in the production of ships and marine vessels. The use of corrosion-resistant steel alloys in shipbuilding helps to prevent rusting, prolonging the lifespan of the vessels and reducing maintenance costs. Additionally, the high strength-to-weight ratio of certain steel alloys enables the construction of lighter ships, leading to increased fuel efficiency and reduced emissions. Overall, special steel's unique properties and characteristics make it an indispensable material in the transportation equipment industry. Its contribution to the sector includes enhancing the performance, safety, and durability of vehicles, railways, aircraft, and ships, ultimately improving the efficiency and reliability of transportation systems.
Q:What are the different casting grades of special steel?
Special steel is a classification of steel that is specifically designed to possess certain exceptional properties, making it suitable for specialized applications. Within the realm of special steel, there are several different casting grades available, each with its own unique characteristics and applications. One common casting grade of special steel is known as stainless steel. This grade contains a high percentage of chromium, which gives it excellent corrosion resistance properties. Stainless steel is widely used in applications where resistance to oxidation, acids, and other corrosive elements is critical, such as in the production of kitchen utensils, medical instruments, and chemical processing equipment. Another casting grade of special steel is tool steel. This grade is specifically formulated to exhibit exceptional hardness, wear resistance, and toughness. Tool steel is commonly used in the manufacturing of cutting tools, dies, molds, and other tools that require high strength and durability. High-speed steel is another important casting grade of special steel. This grade is known for its exceptional heat resistance and ability to maintain its hardness even at high temperatures. High-speed steel is widely used in the production of cutting tools such as drills, taps, and milling cutters, where the material is subjected to high temperatures generated by the cutting process. Furthermore, there are casting grades of special steel that are specifically designed for use in extreme temperature environments. These grades, such as heat-resistant steel, are formulated to maintain their strength and integrity even at elevated temperatures. Heat-resistant steel is commonly used in applications such as furnace components, exhaust systems, and gas turbines. In conclusion, the different casting grades of special steel offer a wide range of properties and applications. Stainless steel provides excellent corrosion resistance, tool steel offers exceptional hardness and toughness, high-speed steel is known for its heat resistance, and heat-resistant steel is designed to withstand extreme temperatures. These grades of special steel play a crucial role in various industries where exceptional properties are required for specific applications.
Q:What are the different heat treatment defects in special steel?
There are several heat treatment defects that can occur in special steel during the heat treatment process. Some of the most common defects include: 1. Decarburization: This occurs when the surface layers of the steel lose carbon due to exposure to high temperatures in an oxygen-rich environment. Decarburization can lead to reduced hardness and strength in the treated steel. 2. Quench cracking: Also known as cracking during quenching, this defect occurs when the steel undergoes rapid cooling after being heated. The differential cooling rates can cause internal stresses, leading to cracks in the material. 3. Distortion: Distortion refers to the change in shape or dimension of the steel during the heat treatment process. It can occur due to non-uniform heating or cooling, inadequate fixturing, or improper quenching techniques. 4. Soft spots: Soft spots are localized areas of reduced hardness in the treated steel. These spots can occur due to insufficient heating or improper quenching, leading to reduced mechanical strength in those areas. 5. Overheating: Overheating is a defect that occurs when the steel is exposed to excessively high temperatures during the heat treatment process. This can result in grain growth, reduced toughness, and decreased overall material properties. 6. Case hardening problems: Special steels often undergo case hardening processes, such as carburizing or nitriding, to create a hard outer layer. However, several defects can occur during these processes, including insufficient or excessive hardening, poor case depth, or uneven hardness distribution. 7. Residual stresses: Residual stresses are internal stresses that remain in the steel after the heat treatment process. These stresses can lead to dimensional instability, warping, or even cracking if not properly controlled. To avoid or minimize these heat treatment defects, it is crucial to follow proper heat treatment procedures, including precise temperature control, adequate cooling rates, and appropriate fixturing techniques. Additionally, using high-quality heat treatment equipment, monitoring the process closely, and conducting thorough inspections can help detect and address any potential defects in special steel.
Q:What are the heat treatment processes used for special steel?
The heat treatment processes commonly used for special steel include annealing, tempering, quenching, and case hardening.
Q:How does special steel perform in cryogenic fatigue resistance?
The exceptional performance of special steel lies in its ability to resist cryogenic fatigue. Cryogenic fatigue occurs when a material's structural integrity deteriorates under repeated loading and unloading at extremely low temperatures. Special steel, also known as high-performance or high-strength steel, surpasses conventional steels in its resistance to cryogenic fatigue. The enhanced cryogenic fatigue resistance of special steel can be attributed to its distinctive composition and microstructure. Special steels are typically alloyed with elements like nickel, chromium, and molybdenum, which enhance their mechanical properties, including strength and toughness, even at low temperatures. These alloying elements enable the steel to maintain its integrity and resist the initiation and propagation of cracks, which are common failure mechanisms in cryogenic environments. Moreover, the manufacturing process of special steel meticulously controls its microstructure to ensure optimal performance in cryogenic conditions. The fine-grained structure of special steel diminishes the susceptibility to fatigue cracks by promoting a more evenly distributed stress and strain throughout the material. This prevents the formation of localized stress concentrations, which can lead to crack initiation and subsequent failure. Apart from its composition and microstructure, special steel undergoes rigorous testing and quality control measures to guarantee its cryogenic fatigue resistance. Various industry standards and specifications, such as the ASTM E466 test method, exist to evaluate the performance of special steel in cryogenic conditions. These tests simulate the cyclic loading and unloading that the material may encounter in cryogenic environments and provide valuable data on its fatigue life and durability. In conclusion, special steel exhibits exceptional resistance to cryogenic fatigue due to its unique composition, controlled microstructure, and meticulous testing. Its ability to endure repeated loading and unloading at extremely low temperatures makes it the preferred choice for applications in industries like aerospace, energy, and cryogenic storage.
Q:What are the different surface treatment methods used for special steel?
Some of the different surface treatment methods used for special steel include galvanizing, electroplating, powder coating, heat treatment, and nitriding. Galvanizing involves applying a protective zinc coating to prevent corrosion. Electroplating uses an electrical current to deposit a layer of metal onto the surface of the steel, improving its appearance and corrosion resistance. Powder coating involves spraying a dry powder onto the steel and then baking it to create a durable and attractive finish. Heat treatment involves subjecting the steel to high temperatures and then cooling it rapidly to alter its properties, such as hardness or toughness. Nitriding is a process of diffusing nitrogen into the surface of the steel to improve its hardness, wear resistance, and corrosion resistance. These surface treatment methods are used to enhance the performance, durability, and aesthetic appeal of special steel.
Q:What are the main advantages of using special steel in the defense industry?
The main advantages of using special steel in the defense industry are its exceptional strength, durability, and resistance to wear and tear. Special steel alloys can withstand extreme conditions, such as high temperatures and pressures, making them ideal for military applications. Additionally, special steel offers enhanced corrosion resistance, ensuring the longevity of defense equipment even in harsh environments. Its high impact resistance and ability to absorb shock also make it valuable in protecting soldiers and military vehicles. Overall, special steel provides crucial advantages in terms of reliability, performance, and protection for the defense industry.
Q:Are there any international standards for special steel?
Yes, there are international standards for special steel. The most widely recognized and accepted international standards for special steel are set by the International Organization for Standardization (ISO). ISO develops and publishes a range of standards that cover various aspects of special steel, including composition, properties, testing methods, and quality requirements. These standards ensure that special steel produced by different manufacturers from different countries meet the same minimum quality and performance criteria. In addition to ISO, there are also other organizations and standards bodies that have their own specific standards for special steel, such as the American Society for Testing and Materials (ASTM) and the European Committee for Iron and Steel Standardization (ECISS). These international standards provide a common framework for the production, trade, and use of special steel across different countries and industries, promoting consistency, reliability, and quality assurance.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords