• ductile iron pipe of china 2200 System 1
  • ductile iron pipe of china 2200 System 2
  • ductile iron pipe of china 2200 System 3
ductile iron pipe of china 2200

ductile iron pipe of china 2200

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

  • Place of Origin:China (Mainland)

  • Model Number:DN80-1600

  • Length:6M/5.7M/NEGOTIATED

  • Standard:ISO2531 / EN545

  • Application:Potable/Sewage Water

  • Diameter:DN80-1600

  • Shape:Round

  • Hardness:230

  • Pipe Wall Thickness:standerd

  • Pull Strength:420

  • Yield (≥ MPa):300

  • Material:Ductile Iron

  • water ductile iron pipe:SO2531 / EN545 DI pipe

Packaging & Delivery

Delivery Detail:30-45 days

Specifications

ductile iron pipe:
1. DN80-DN1600mm (T-Type, Class K9)
2.effective length 6m/pc
3.comply with ISO2531/EN545/EN598

Company Profile

CNBM International Corporation is the leading production base and renowned supplier of Ductile Iron Water Pipe systems of both potable and waste water in China. We are constantly looking to develop high quality products to ensure the longest service life and wonderful performance.


CNBM Pipelines regard quality as the essential factor leading to successful business. Every ductile iron pipe is tested in accordance with BS EN545 (water application) or BS EN598 (sewer application). CNBM Pipelines products comply with and are tested according to the relevant European and International Standards. Our pipes are manufactured under the quality management system BS EN ISO 9001. After years of efforts, CNBM Pipelines has built up great reputation in terms of quality and service among customers worldwide.


Product Introduction

CNBM ductile iron pipe ranges from DN80-DN1600mm (Tyton, T-Type, Class K7/K8/K9), effective length: 6m, complying with ISO2531and EN545 standards.


Specification& Payment terms

Internal lining:      ductile iron pipes shall have an internal cement mortar lining in acc with ISO4179.


External coating:  ductile iron pipes shall be externally coated with metallic zinc spray plus a further layer of resin painting to ISO8179.

Gasket:              100% SBR/NBR/EPDM rubber gasket in accordance with ISO4633.

Packing:             ductile iron pipes from DN100 to DN300 be bundled with steel belts, others are in bulk.

Payment term:    L/C, T/T.
Packing:             In bulk vessel or in container



Q:Can ductile iron pipes be used for underground chemical transport systems?
Ductile iron pipes are commonly used for various applications due to their strength, durability, and resistance to corrosion. However, when it comes to underground chemical transport systems, there are certain factors that need to be considered before choosing ductile iron pipes as the suitable material. Firstly, the type of chemicals being transported should be evaluated. Ductile iron pipes are generally resistant to a wide range of chemicals, including acids, alkalis, and organic solvents. However, there are some chemicals that can corrode or react with the iron content of the pipes, leading to degradation and potential leakage. Therefore, it is crucial to assess the chemical compatibility and consult with chemical engineers or experts to determine whether ductile iron pipes are suitable for specific chemical transport applications. Secondly, the concentration and temperature of the chemicals should be taken into account. Elevated temperatures and high concentrations of certain chemicals can accelerate the corrosion process, potentially compromising the integrity of the pipes. It is essential to assess the operating conditions and ensure that the ductile iron pipes can withstand the chemical concentration and temperature levels. Additionally, the potential presence of abrasive or erosive chemicals should be considered. If the transported chemicals contain abrasive particles or have erosive properties, it may lead to increased wear and tear on the inner surface of the pipes, reducing their lifespan and potentially causing leaks. In such cases, alternative materials with higher resistance to abrasion or erosion may be more suitable. Lastly, it is important to comply with relevant regulations and standards. Different countries or regions may have specific requirements for underground chemical transport systems, including the choice of materials. It is necessary to ensure that ductile iron pipes meet the necessary standards and are approved for use in such applications. In conclusion, while ductile iron pipes have many desirable properties for various applications, including underground use, their suitability for chemical transport systems depends on several factors. Chemical compatibility, concentration and temperature levels, the presence of abrasive or erosive chemicals, and compliance with regulations should all be carefully evaluated before deciding to use ductile iron pipes for underground chemical transport systems. Consulting with experts in the field is highly recommended to ensure the safety and effectiveness of the chosen piping material.
Q:Are ductile iron pipes suitable for bridge crossings?
Yes, ductile iron pipes are suitable for bridge crossings. They have high strength and durability, making them capable of withstanding heavy loads and providing reliable support for transportation infrastructure. Additionally, ductile iron pipes have excellent corrosion resistance properties, which is crucial for bridge crossings exposed to various weather conditions and potential water exposure.
Q:What is the composition of ductile iron pipes?
Ductile iron pipes are primarily composed of iron, with small amounts of carbon, silicon, manganese, and trace elements such as sulfur and phosphorus.
Q:What is the expected fire resistance of ductile iron pipes?
The fire resistance of ductile iron pipes can vary based on factors such as pipe wall thickness, installation quality, and surrounding conditions. However, in general, ductile iron pipes exhibit high fire resistance due to their durable and heat-resistant composition. Ductile iron is created by adding a small amount of magnesium to cast iron, which enhances its strength and flexibility. This results in ductile iron pipes being less prone to cracking or breaking under high temperatures compared to materials like PVC or HDPE pipes. Regarding fire resistance, ductile iron pipes can endure high temperatures for a prolonged period without significant structural damage. They have undergone testing and have been proven to maintain their integrity in fire situations for 2-4 hours, depending on the specific pipe design and installation. It is important to note that while ductile iron pipes possess high fire resistance, they are not fireproof. In the event of a fire, it is vital to adhere to proper fire safety procedures and seek advice from professionals to ensure the safety of the system and surrounding infrastructure.
Q:Can ductile iron pipes be used in areas with high levels of hydrogen sulfide gas and corrosion potential?
Before making a decision, it is important to take certain factors into consideration when considering the use of ductile iron pipes in areas with high levels of hydrogen sulfide gas and corrosion potential. Ductile iron pipes display a strong resistance to corrosion, particularly when they are adequately protected with external coatings and linings. This characteristic makes them appropriate for environments with moderate levels of hydrogen sulfide gas and corrosion potential. Nevertheless, in areas with exceedingly high levels of hydrogen sulfide gas and severe corrosion potential, alternative materials such as corrosion-resistant alloys or specially coated pipes may be more suitable. To determine the suitability of ductile iron pipes, conducting a thorough evaluation of the specific conditions in the area is crucial. Factors such as the concentration of hydrogen sulfide gas, the presence of other corrosive elements or chemicals, and the overall corrosiveness of the environment should be taken into account. Furthermore, consulting the local regulations and industry standards is essential to ensure compliance and safety. In conclusion, while ductile iron pipes can withstand moderate levels of hydrogen sulfide gas and corrosion potential, it is necessary to conduct a comprehensive assessment of the specific conditions. In areas with high levels of hydrogen sulfide gas and severe corrosion potential, consulting with experts in the field and considering alternative materials may be required.
Q:Are ductile iron pipes suitable for use in geothermal applications?
Yes, ductile iron pipes are suitable for use in geothermal applications. They possess excellent strength and corrosion resistance, making them resistant to the high temperatures and corrosive nature of geothermal fluids. Additionally, their ductility allows them to withstand the expansion and contraction associated with geothermal systems, making them a reliable choice for such applications.
Q:Are ductile iron pipes resistant to soil movement?
Yes, ductile iron pipes are generally resistant to soil movement due to their high tensile strength and flexibility. They can withstand ground settlement, soil shifting, and other forms of soil movement without experiencing significant damage or failure.
Q:What is the minimum pipe diameter of cast iron pipe?
Nominal diameter of continuous grey cast iron pipe is 75~1200 mm, minimum 75 mm, maximum 1200 mm.
Q:What is the expected thrust restraint method for ductile iron pipes?
The expected thrust restraint method for ductile iron pipes is typically achieved through the use of mechanical joint restraints. These restraints are designed to resist the axial forces or thrust generated by the fluid pressure inside the pipe. The most common types of mechanical joint restraints used for ductile iron pipes include thrust blocks, tie rods, and harness restraints. Thrust blocks are concrete structures placed around the pipe joints to resist the thrust forces. They are typically constructed at bends, tees, and other changes in direction to prevent the movement of the pipes. Tie rods are another common method of thrust restraint, where steel rods are anchored to the pipe and secured to an immovable structure to counteract the thrust forces. Harness restraints consist of a series of steel rods or cables that encircle the pipe and are anchored to the ground on either side. These restraints distribute the axial forces along the length of the pipe, preventing movement and ensuring stability. The specific thrust restraint method used for ductile iron pipes may vary depending on factors such as pipe diameter, fluid pressure, soil conditions, and local regulations. It is important to consult with industry standards, engineering guidelines, and local authorities to determine the appropriate thrust restraint method for a given application.
Q:Why is the sound speed of nodular cast iron lowered after heat treatment?
After the heat treatment, the microstructure of the material changes, the graphite changes, eliminating the internal stress of molecules, thus slowing down the speed.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords