• 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V System 1
  • 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V System 2
  • 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V System 3
10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

Ref Price:
$150.00 - 450.00 / pc get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
50 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Advances of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

Our solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

Our solar backup electric systems use special high-quality electric storage batteries.

 

Main Features of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

.Power range 1kw-112kw
.12/24v/48v input optional
.Powerful Charge Rate Up to 100Amp
.Inbuilt pure copper transformer
.Pure sine wave output
.LED+LCD display
.MPPT solar charge controller 40A 45A 60A
.50/60HZ automatic sensing
.RS232 with free CD
.Battery priority function
.DC Start & Automatic Self-Diagnostic Function
.High Efficiency Design & “Power Saving Mode” to Conserve Energy

 

Specificationsc of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

Solar Inverter Model

1.0KW

1.5KW

2.0KW

3.0KW

4.0KW

5.0KW

6.0KW

8.0KW

10.0KW

12.0KW

Inverter

output

Continuous output power

1.0KW

1.5KW

2.0KW

3.0KW

4.0KW

5.0KW

6.0KW

8.0KW

10.0KW

12.0KW

Surge rating (20ms)

3.0KW

4.5KW

6.0KW

9.0KW

12.0KW

15.0KW

18.0KW

24.0KW

30.0KW

36.0KW

Output waveform

Pure sine wave/ same as input (bypass mode)

Nominal efficiency

>88% (peak)

Line mode efficiency

>95%

Power factor

0.9-1.0

Nominal output voltage RMS

100-110-120VAC/220-230-240VAC

Output voltage regulation

±10% RMS

Output frequency

50Hz ± 0.3Hz / 60Hz ± 0.3Hz

Short circuit protection

Yes (1sec after fault)

Typical transfer time

10ms (max)

THD

< 10%

DC

input

Nominal input voltage

12.0VDC / 24.0VDC / 48.0VDC

24.0VDC /48.0VDC

48.0VDC

Minimum start voltage

10.0VDC /10.5VDC for12VDC mode

*2 for 24VDC, *4 for 48VDC

Low battery alarm

10.5VDC /11.0VDC for12VDC mode

Low battery trip

10.0VDC /10.5VDC for12VDC mode

High voltage alarm

16.0VDC for12VDC mode

Low battery voltage recover

15.5VDC for12VDC mode

Idle consumption-search mode

<25W when power saver on. (refer to table)

Charger

Output voltage

Depends on battery type (refer to table 2.5.2)

Charger breaker rating

10A

15A

20A

20A

20A

30A

30A

40A

40A

40A

Max charge power rate

1/3 Rating power (refer to table 2.5.3)

Battery initial voltage for start

10-15.7VDC for 12VDC mode

*2 for 24VDC, *4 for 48VDC

Over charge protection S.D.

15.7VDC for 12VDC mode

BTS

Battery temperature sensor (optional)

Yes (refer to the table) Variances in charging voltage & S.D. voltage base on the battery temperature.

Bypass & protection

Input voltage waveform

Sine wave (grid or generator)

Nominal voltage

110VAC

120VAC

220VAC

230VAC

230VAC

Max input AC voltage

150VAC for 120VAC LV mode; 300VAC for 230VAC HV mode.

Nominal input frequency

50Hz or 60Hz

Low freq trip

47 ± 0.3Hz for 50Hz; 57 ± 0.3Hz for 60Hz

High freq trip

55 ± 0.3Hz for 50Hz; 65 ± 0.3Hz for 60Hz

Overload protection (SMPS load)

Circuit breaker

Output short circuit protection

Circuit breaker

Bypass breaker rating

10

15

20

30

40

40

40

50

63

63

Transfer switch rating

30Amp for UL & TUV

40Amp for UL

80Amp for UL

Bypass without battery connected

Yes (optional)

Max bypass current

30Amp

40Amp

80Amp

Solar charger
(optional)

Rated voltage

12.0VDC / 24.0VDC / 48.0VDC

Solar input voltage range

15-30VDC / 30-55VDC / 55-100VDC

Rated charge current

40-60A

Rated output current

15A

Self consumption

<10mA

Bulk charge (default)

14.5VDC for12VDC mode

*2 for 24VDC, *4 for 48VDC

Floating charge (default)

13.5VDC for12VDC mode

Equalization charge (default)

14.0VDC for12VDC mode

Over charge disconnection

14.8VDC for12VDC mode

Over charge recovery

13.6VDC for12VDC mode

Over discharge disconnection

10.8VDC for12VDC mode

Over discharge reconnection

12.3VDC for12VDC mode

Temperature compensation

-13.2mVDC/℃ for12VDC mode

Ambient temperature

0-40℃ (full load) 40-60℃ (derating)

Mechanical

specifications

Mounting

Wall mount

Inverter dimensions (L*W*H)

388*415*200mm

488*415*200mm

588*415*200mm

Inverter weight (solar chg) KG

21+2.5

22+2.5

23+2.5

27+2.5

38+2.5

48+2.5

49+2.5

60+2.5

66+2.5

70+2.5

Shipping dimensions (L*W*H)

550*520*310mm

650*520*310mm

750+520+310mm

Shipping weight (solar chg) KG

23+2.5

24+2.5

25+2.5

29+2.5

40+2.5

50+2.5

51+2.5

62+2.5

68+2.5

72+2.5

Display

LED+LCD

Standard warranty

1 year

 

Pictures of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

 

Solar Inverter's Application

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

 

Warranty of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

OKorder’s Products provides a 1~3 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later.

This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to MUST-Solar.

This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

Certificates of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

FAQ of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

    How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;

We resolutely put an end to unqualified products flowing into the market.

At the same time, we will provide necessary follow-up service assurance.

    How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.

Q:Can a solar inverter be used with a solar-powered air cooling system?
Yes, a solar inverter can be used with a solar-powered air cooling system. The solar inverter would convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity, which can then be used to power the air cooling system. This allows the system to operate efficiently and effectively using solar energy.
Q:What is the maximum AC output power of a solar inverter?
The maximum AC output power of a solar inverter is determined by its capacity and specifications, but it typically ranges from a few hundred watts to several kilowatts.
Q:What is the role of a solar inverter in protecting the electrical grid?
The role of a solar inverter in protecting the electrical grid is to ensure the safe and efficient integration of solar power into the grid. It converts the direct current (DC) produced by solar panels into alternating current (AC) that is compatible with the grid. Additionally, solar inverters monitor and regulate the flow of electricity, providing grid stability by managing voltage and frequency fluctuations. They also incorporate safety mechanisms to disconnect from the grid in case of emergencies or grid disturbances, protecting both the solar system and the overall electrical grid.
Q:Can a solar inverter be used with a solar-powered CCTV system?
Yes, a solar inverter can be used with a solar-powered CCTV system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that is used to power electrical devices. In the case of a solar-powered CCTV system, the solar panels generate DC electricity, which is then fed into the solar inverter to convert it into AC power, enabling it to operate the CCTV cameras and other necessary equipment.
Q:Can a solar inverter be used with a solar-powered street lighting system?
Yes, a solar inverter can be used with a solar-powered street lighting system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. In the case of a solar-powered street lighting system, the solar inverter can convert the DC power generated by the solar panels into AC power to operate the street lights. This allows the system to efficiently utilize the energy generated by the sun and provide reliable lighting for the streets.
Q:Is the grid side of the grid and the inverter?
The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.
Q:Are there any safety risks associated with solar inverters?
Yes, there are potential safety risks associated with solar inverters. These risks can include electrical hazards, such as electric shock or fire, especially if the inverter is not installed or maintained correctly. Additionally, there is a possibility of arc flash incidents and potential exposure to high voltage DC electricity. It is important to follow proper installation and maintenance procedures, as well as adhere to safety guidelines provided by manufacturers and professionals, to mitigate these risks and ensure safe operation of solar inverters.
Q:What is the maximum DC input voltage for a solar inverter?
The maximum DC input voltage for a solar inverter typically depends on the specific model and manufacturer. However, in general, most solar inverters have a maximum DC input voltage ranging from 600 to 1000 volts.
Q:What are the common maintenance requirements for a solar inverter?
Some common maintenance requirements for a solar inverter include regular cleaning to remove dust and debris, checking for loose connections or wiring issues, monitoring performance and output levels, and ensuring proper ventilation to prevent overheating. It is also important to keep an eye on the inverter's display for error messages or any signs of malfunctioning. Regular inspections and maintenance by a qualified technician are recommended to ensure optimal performance and longevity of the solar inverter.
Q:Can a solar inverter be used in areas with high altitude and low temperature conditions?
Yes, a solar inverter can be used in areas with high altitude and low temperature conditions. However, it is important to choose a solar inverter specifically designed for such conditions, as extreme cold temperatures and high altitudes can affect the performance and efficiency of standard inverters. Specialized inverters that can withstand low temperatures and operate at high altitudes are available in the market to ensure optimal functioning of solar power systems in such environments.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords