• Special Steel 430 Stainless Steel Round Bar System 1
  • Special Steel 430 Stainless Steel Round Bar System 2
  • Special Steel 430 Stainless Steel Round Bar System 3
  • Special Steel 430 Stainless Steel Round Bar System 4
Special Steel 430 Stainless Steel Round Bar

Special Steel 430 Stainless Steel Round Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product information: 

Standard

ASTM

Grade

astm 430

MOQ

1 Metric Ton

Diameter

8mm~1500mm

Length

6m,12m or as required.

Diameter Tolerance

As required

Condition of delivery

Hot rolled,Cold Rolled or as required.

Chemical Composition(%)

C

Si

Mn

P

S

Cr

≤0.12

≤1.00

≤1.00

≤0.04

≤0.03

  16.00-18.00

 

Ni






  ≤0.75






Mechanical Properties(In Quenching and Tempering)

Tensile strength

Yield strength

Elongation

Reduction in Area

Impact

Hardness

(σb/MPa)

(σs/MPa)

(δ5/%)

(ψ/%)

(J)

(HB)

≥205

≥450

≥22

≥50

 -

≤183


Product Show:

Special Steel 430 Stainless Steel Round Bar

Workshop Show:

Special Steel 430 Stainless Steel Round Bar

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q:How is the toughness of special steel measured?
The toughness of special steel can be assessed by specific tests and methodologies that evaluate its capacity to absorb energy and withstand fractures. One widely used approach is the Charpy V-Notch (CVN) test, in which a notched specimen is struck by a pendulum hammer, and the energy absorbed during fracture is measured. The results are then expressed as the energy absorbed per unit area, typically in joules per square centimeter (J/cm²) or foot-pounds per square inch (ft-lb/in²). Another commonly employed test is the Izod test, which is similar to the CVN test but involves a different specimen geometry. Furthermore, engineers and manufacturers may also employ other mechanical tests such as tensile strength, impact strength, and fracture toughness measurements to evaluate the toughness of special steel. These tests are invaluable in determining the suitability of special steel for various applications, particularly those requiring exceptional resistance to impact or sudden loading.
Q:What are the different non-metallic inclusions in special steel?
The different non-metallic inclusions commonly found in special steel include oxides, sulfides, nitrides, and carbides. These inclusions can have various shapes and sizes, and their presence can significantly affect the mechanical properties and performance of the steel.
Q:Can special steel be coated?
Yes, special steel can be coated. Coating special steel provides several benefits such as corrosion resistance, improved aesthetics, increased durability, and enhanced functionality. There are various coating materials and techniques available for special steel, including but not limited to electroplating, hot-dip galvanizing, powder coating, and ceramic coating. These coatings help protect the steel from environmental factors, chemical exposure, and wear and tear, thereby extending its lifespan and maintaining its performance. Additionally, coatings can also be customized to provide specific properties like non-stick surfaces, heat resistance, or anti-microbial properties, depending on the intended application of the special steel.
Q:How does special steel ensure product reliability?
Special steel is specifically designed and manufactured to possess superior qualities that enhance product reliability. One of the key factors that contributes to the reliability of special steel is its exceptional strength and durability. This type of steel is engineered to withstand high levels of stress, pressure, and temperature, ensuring that it can perform reliably even in challenging conditions. Special steel also offers excellent resistance to corrosion, wear, and fatigue. This is achieved through the addition of various alloying elements and careful heat treatment processes. The enhanced resistance to corrosion and wear minimizes the risk of degradation and failure, which in turn enhances the reliability of the product. Moreover, special steel is known for its exceptional dimensional stability and accuracy. This means that it maintains its shape and size under various operating conditions, minimizing the potential for dimensional changes that could affect the overall performance and reliability of the product. Another aspect that makes special steel reliable is its consistent and uniform composition. The manufacturing process of special steel ensures that it has a homogeneous and controlled structure, which leads to predictable and reliable mechanical properties. This allows designers and engineers to accurately predict the behavior and performance of the steel, thus increasing the reliability of the final product. Furthermore, special steel is often subjected to stringent quality control measures throughout the manufacturing process. This ensures that the steel meets or exceeds industry standards and specifications. By adhering to these strict quality standards, special steel manufacturers can guarantee a high level of product reliability. In conclusion, special steel ensures product reliability by providing exceptional strength, durability, resistance to corrosion and wear, dimensional stability, uniform composition, and strict quality control measures. These features collectively contribute to the reliable performance of products made from special steel, making it a preferred choice in industries where reliability is paramount.
Q:How does special steel perform in high-temperature mechanical fatigue conditions?
Special steel, such as heat-resistant or high-temperature steel alloys, is specifically designed to excel in high-temperature mechanical fatigue conditions. It demonstrates superior resistance to thermal expansion, corrosion, and oxidation, allowing it to maintain its structural integrity and mechanical properties even at elevated temperatures. This type of steel exhibits excellent strength, toughness, and creep resistance under prolonged cyclic loading, making it a reliable material for applications in high-temperature mechanical fatigue conditions.
Q:What are the different methods of preventing pitting corrosion in special steel?
There are several methods available to prevent pitting corrosion in special steel. These techniques aim to protect the steel surface from the corrosive environment and inhibit the formation of pits. Some of the commonly used methods include: 1. Passivation: Passivation involves treating the steel surface with a chemical solution or coating to create a protective oxide layer. This layer acts as a barrier, preventing the penetration of corrosive agents and reducing the risk of pitting corrosion. 2. Alloying: By adding specific alloying elements to the steel composition, its resistance to corrosion can be improved. Elements such as chromium, nickel, and molybdenum are often used as they enhance the steel's ability to form a stable passive film and resist pitting corrosion. 3. Cathodic protection: This method involves using a sacrificial anode or applying an impressed current to the steel surface. By making the steel cathodic, it becomes less susceptible to corrosion as electrons are drawn away from it, preventing the formation of pits. 4. Coatings: Applying a protective coating to the steel surface can effectively prevent pitting corrosion. Coatings such as paint, epoxy, or polymer-based materials act as a physical barrier, shielding the steel from corrosive agents. 5. Environmental control: Controlling the environment surrounding the steel can also help prevent pitting corrosion. This includes measures such as regulating temperature, humidity, and pH levels to ensure they are within acceptable limits and inhibiting the corrosion process. 6. Regular maintenance: Regular inspection and maintenance of the steel surface are crucial for preventing pitting corrosion. Any signs of damage or deterioration should be addressed promptly to prevent further corrosion and potential pitting. It is important to note that the choice of prevention method depends on various factors such as the specific steel composition, the corrosive environment, and the intended application. Proper selection and implementation of these methods can significantly enhance the resistance of special steel to pitting corrosion, ensuring its longevity and performance.
Q:What are the specific requirements for special steel used in the nuclear waste storage industry?
The nuclear waste storage industry has stringent and critical requirements for special steel to guarantee the safety and long-term viability of storage facilities. These requirements are driven primarily by the need to mitigate risks associated with nuclear waste, such as radiation leakage and corrosion. One key requirement is the need for high strength and durability. Special steel used in nuclear waste storage must possess exceptional mechanical properties to withstand the weight and pressure exerted by waste containers and the surrounding environment. This includes resistance to deformation, fracture, and fatigue, as well as the ability to maintain structural integrity for an extended period. Another essential requirement is excellent corrosion resistance. Nuclear waste contains highly corrosive substances that can degrade regular steel over time. Therefore, special steel used in the nuclear waste storage industry must have enhanced corrosion resistance to ensure long-term durability and prevent leakage of radioactive materials. Furthermore, the steel must have a low susceptibility to stress corrosion cracking (SCC). SCC occurs when a combination of tensile stress, corrosive environment, and specific material conditions result in crack initiation and propagation. To maintain the integrity of containers and minimize the risk of leakage, the steel used must be highly resistant to SCC. Radiation resistance is also critical for special steel used in nuclear waste storage. The steel should exhibit minimal degradation or embrittlement when exposed to high levels of radiation. This is necessary to maintain the structural integrity of storage containers and prevent any weakening that could compromise waste containment. In addition, the special steel used in the nuclear waste storage industry must comply with strict regulatory standards and certifications. It must meet specific design codes and guidelines set by regulatory authorities to ensure compliance with safety regulations and minimize potential hazards. In conclusion, the special steel used in the nuclear waste storage industry must meet specific requirements, including high strength, durability, corrosion resistance, low susceptibility to stress corrosion cracking, radiation resistance, and compliance with regulatory standards. These requirements are essential for maintaining the safety and integrity of storage facilities and preventing any leakage or release of radioactive materials into the environment.
Q:Can special steel be used in the manufacturing of consumer goods?
Yes, special steel can be used in the manufacturing of consumer goods. Special steel, with its superior strength, durability, and corrosion resistance properties, can be utilized in various consumer products such as kitchen appliances, cutlery, watches, automotive parts, and electronics. Its use enhances the performance and longevity of these goods, making them more reliable and efficient for consumers.
Q:How is corrosion-resistant stainless tool steel used in the production of food processing equipment?
Corrosion-resistant stainless tool steel is used in the production of food processing equipment due to its ability to resist rust and corrosion caused by exposure to moisture, chemicals, and food acids. This steel is specifically designed to withstand the harsh conditions present in food processing environments, ensuring the equipment remains durable and hygienic. It is commonly used to manufacture blades, cutting tools, and various components of machines that come into direct contact with food. Its corrosion-resistant properties make it a reliable and safe choice for maintaining the quality and integrity of food during processing.
Q:What are the requirements for special steel used in mining equipment?
Special steel used in mining equipment needs to possess certain key requirements. Firstly, it must have high strength and toughness to withstand the harsh and demanding conditions present in mining operations. It should also exhibit excellent wear resistance to endure the abrasive nature of rocks and minerals. Additionally, corrosion resistance is crucial to prevent the steel from deteriorating due to exposure to water, chemicals, and other corrosive substances commonly found in mining environments. Finally, the special steel used in mining equipment should be capable of maintaining its mechanical properties at elevated temperatures, as mining processes often involve high heat generation. Overall, the requirements for special steel in mining equipment revolve around durability, wear resistance, corrosion resistance, and heat resistance.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords