• Solar Inverter, Best Mppt Inverter Hybrid A System 1
  • Solar Inverter, Best Mppt Inverter Hybrid A System 2
  • Solar Inverter, Best Mppt Inverter Hybrid A System 3
  • Solar Inverter, Best Mppt Inverter Hybrid A System 4
  • Solar Inverter, Best Mppt Inverter Hybrid A System 5
Solar Inverter, Best Mppt Inverter Hybrid A

Solar Inverter, Best Mppt Inverter Hybrid A

Ref Price:
$100.00 - 350.00 / unit get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
15 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Solar Inverter, Best Mppt Inverter Hybrid A Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a

utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a

critical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special

functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

 

 

2. Main Features of Solar Inverter, Best Mppt Inverter Hybrid A

•  High Frequency inverter

•  Rack Tower Design

•  Off mode charging inverter

•  Full automatic and silent operation

•  User selectable for accepting wider input voltage

•  Compact size for convenient use and storage

•  Built-in 8Amp super charger for up to 100Ah battery

•  Small Scale and cost effective inverter for home appliances and office equipment

•  Two-steps intelligent charging control to reduce the recharging time

 

 

 

3. Power Inverter with Solar Inverter, Best Mppt Inverter Hybrid A Images

 

 

 

4. Solar Inverter, Best Mppt Inverter Hybrid A Specification

窗体顶端

MODEL窗体底端

 

INVERMAX 500

INVERMAX 1000

INVERMAX 2000

CAPACITY

VA/W

500VA / 300W

1000VA / 600W

2000VA / 1280W

INPUT

Phase

Single

Voltage

110 / 120VAC or 220 / 230 / 240VAC

Voltage Range

90 - 145VAC or 170-280VAC ( Narrow Range )

50-145VAC / 90-280VAC (Wide Range)

OUTPUT

Phase

Single

Voltage

120VAC or 230VAC

Voltage Regulation(Batt. Mode)

-0.555555556

Frequency

50Hz or 60Hz

Frequency Regulation (Batt. Mode)

+/- 0.1 Hz

Output Waveform (Batt. Mode)

Modified Sinewave

POWER FACTOR

P.F.

0.6

BATTERY

Charger Current

8 Amp + / - 1Amp

6 Amp + / - 1Amp

10 Amp + / - 1Amp

Floating Voltage

13.7V + / - 0.2V

27.4V + / - 0.4V

Overcharge Protection

14.5V +/- 0.3V charger stops and fault

29V +/- 0.6V charger stops and fault

TRANSFER TIME

Typical

8ms (Narrow mode)

EFFICIENCY

AC to AC

>95%

DC to AC

>80%

INDICATOR

AC Mode

Green LED lighting

Battery Mode

Yellow LED lighting

Battery Charging Mode

Green LED flashing every 2 seconds

Overload

Red LED flashing every 0.5 second

Fault

Red LED lighting

AUDIBLE ALARM

Low Battery at Battery Mode

Sounding every 2 seconds

Overload

Sounding every 0.5 second

Fault

Continuously sounding

PROTECTION

Full Protection

Deep Discharge, Overcharge, Overload protection, Short Circuit, Battery Shot, Over Voltage and Under Voltage

PHYSICAL

Dimension (DxWxH) mm

224 X 255 X 80

Net Weight (kgs)

1.7 for 500VA / 300W

2.5

ENVIRONMENT

Operating Environment

0~40 Degrees Centigrade, 0~90% relative humidity (non-condensing)

0~50 Degrees Centigrade

Noise Level

Less than 45dB 窗体底端

 

 

5. FAQ of Solar Inverter, Best Mppt Inverter Hybrid A

Q1:Can we visit your factory?

A1:Sure,welcome at any time,seeing is believing.

 

Q2:Which payment terms can you accept?

A2:T/T,L/C,Moneygram,Paypal are available for us.

 

Q:How does a three-phase solar inverter differ from a single-phase inverter?
A three-phase solar inverter differs from a single-phase inverter in terms of the number of input and output phases it can handle. While a single-phase inverter can only handle a single-phase input and output, a three-phase inverter is designed to handle three-phase input and output. This allows for a more efficient and balanced distribution of power in three-phase electrical systems, making three-phase inverters suitable for larger solar installations or commercial applications.
Q:Can a solar inverter be used with smart home systems?
Yes, a solar inverter can be used with smart home systems. Many modern solar inverters are designed to integrate with smart home technology, allowing homeowners to monitor and control their solar energy production and consumption through their smart devices. This integration enables better management of energy usage, optimization of solar power generation, and the ability to remotely monitor and adjust the inverter settings for improved efficiency and convenience.
Q:How does a solar inverter handle power factor optimization?
A solar inverter handles power factor optimization by ensuring that the power generated by the solar panels is synchronized with the grid's voltage and frequency. It adjusts the power factor by actively controlling the flow of current between the solar panels and the grid, allowing for efficient power transfer and minimizing reactive power consumption.
Q:Can a solar inverter be upgraded or expanded?
Yes, a solar inverter can be upgraded or expanded. Upgrades may involve adding new features or improving the efficiency of the existing inverter. Expansion typically refers to increasing the capacity of the inverter to accommodate additional solar panels. However, the extent to which an inverter can be upgraded or expanded varies depending on the specific model and manufacturer.
Q:How does a solar inverter affect the overall efficiency of a solar system?
A solar inverter plays a crucial role in the overall efficiency of a solar system. It converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power household or commercial appliances. By ensuring optimal conversion efficiency and minimizing power losses during this process, a high-quality solar inverter can significantly impact the overall efficiency of a solar system.
Q:What is the role of a transformer in a solar inverter?
The role of a transformer in a solar inverter is to convert the direct current (DC) power generated by the solar panels into alternating current (AC) power that can be used by household appliances and fed back into the electrical grid. The transformer helps to step up or step down the voltage as necessary and provides isolation between the solar panels and the grid, ensuring safe and efficient power transmission.
Q:Can a solar inverter be integrated with a smart home system?
Yes, a solar inverter can be integrated with a smart home system. This integration allows for monitoring and controlling the solar energy production, as well as optimizing energy usage and managing the overall efficiency of the system.
Q:Can a solar inverter be used with a solar-powered food dehydrator?
Yes, a solar inverter can be used with a solar-powered food dehydrator. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. Since a solar-powered food dehydrator typically requires AC power, a solar inverter is necessary to convert the DC power generated by the solar panels into the appropriate form for the dehydrator to function.
Q:What are the potential risks of overcharging a battery connected to a solar inverter?
Overcharging a battery connected to a solar inverter can lead to several potential risks. Firstly, it can cause excessive heat buildup in the battery, which can lead to reduced battery life and even damage the internal components. Secondly, overcharging can cause electrolyte leakage or gas buildup within the battery, increasing the risk of explosion or fire hazard. Additionally, overcharging can result in the release of toxic gases, such as hydrogen, which can be harmful if not properly ventilated. Finally, overcharging can also have an adverse effect on the overall efficiency of the solar system, as excess energy is wasted during the charging process.
Q:Can a solar inverter be used in off-grid systems?
Yes, a solar inverter can be used in off-grid systems. Off-grid systems rely on solar panels to generate electricity and store it in batteries for use when the sun is not shining. A solar inverter is necessary to convert the direct current (DC) produced by the solar panels into alternating current (AC) that is usable by common household appliances.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords