• HRB335 small hot rolled  deformed steel bar System 1
  • HRB335 small hot rolled  deformed steel bar System 2
  • HRB335 small hot rolled  deformed steel bar System 3
  • HRB335 small hot rolled  deformed steel bar System 4
HRB335 small hot rolled  deformed steel bar

HRB335 small hot rolled deformed steel bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

REINFORCING DEFORMED STEEL BAR
ACORDING TO ASTM/BS/FEE/ EXTC....
LENGTH:ANY LENGTH

PLEASE SEND US YOUR REQUEST WITH FULL DETAILS FOR BEST OFFER

 

REINFORCING DEFORMED STEEL BAR
ACORDING TO ASTM/BS/FEE/ EXTC....
LENGTH:ANY LENGTH

Specifications

Certificates: CE & ISO9001:2000
Material: hrhrb400 ,hrb500, BS4449, ASTM A615, SD400
length:6-12
Size: 6mm-40mm

Product Advantages:

OKorder's Hot Rolled Carbon Steel Deformed Bar 16-25mm with High Quality are durable, strong.packed and suitable for construction

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335 HRB400 BS4449 Grade460 ASTM Grade40 Grade60

Certificates: ISO, SGS, BV, CIQ

Length:6m 8m 9m 12m

Packaging: Export packing, packed by coil

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: How many tons per bundle?

A4: Around 2-3tons

Q5: How to avoid the rust after deliver the goods to the loading port?

HRB335 small hot rolled  deformed steel bar

HRB335 small hot rolled  deformed steel bar

HRB335 small hot rolled  deformed steel bar

Q:Are steel rebars suitable for use in high-temperature applications?
Steel rebars are generally not suitable for use in high-temperature applications. Although steel is a strong and durable material, it has limitations when exposed to high temperatures. At elevated temperatures, steel can undergo significant reduction in strength and may even experience a loss of structural integrity, leading to potential failures. When steel is exposed to high temperatures, it undergoes a process called thermal expansion, which can cause it to weaken and deform. This phenomenon is particularly prominent in rebars, which are often used as reinforcements in concrete structures. The high temperatures can cause the rebars to expand and exert excessive pressure on the surrounding concrete, leading to cracks and potentially compromising the structure's stability. Additionally, prolonged exposure to high temperatures can result in a loss of the steel's mechanical properties, including tensile strength and load-bearing capacity. This can significantly reduce the rebars' ability to resist external forces and effectively reinforce the concrete. Therefore, it is generally recommended to use alternative materials, such as stainless steel or special alloys, for high-temperature applications. These materials are specifically designed to withstand elevated temperatures without losing their structural integrity. It is important to consult with experts and engineers familiar with high-temperature applications to determine the most suitable materials for specific projects to ensure safety and structural stability.
Q:What is the effect of exposure to saltwater on steel rebars?
Exposure to saltwater can have a detrimental effect on steel rebars, leading to corrosion and structural degradation. The high salt content in seawater acts as an electrolyte, initiating an electrochemical reaction on the surface of the steel, causing it to rust and weaken over time. This can compromise the integrity of reinforced concrete structures, reducing their lifespan and potentially leading to structural failures if not properly maintained or protected.
Q:How do steel rebars perform in blast-resistant structures?
Steel rebars perform well in blast-resistant structures due to their high tensile strength and ductility. They are able to absorb and distribute the energy produced by a blast, reducing the impact on the structure and preventing collapse. The use of steel rebars in reinforced concrete provides additional structural integrity, making the overall construction more resilient against blast forces.
Q:What are the factors that determine the selection of steel rebars?
There are several factors that determine the selection of steel rebars for construction projects. One of the most important factors is the required strength and durability of the structure. Different grades of steel rebars have different yield strengths, which indicate the maximum amount of stress the rebar can withstand before it begins to deform. The design of the structure and the load it will bear will determine the required strength of the rebars. Another factor is the corrosion resistance of the rebars. Steel rebars are susceptible to corrosion, especially when exposed to moisture and other environmental factors. In areas with high humidity or near coastal regions, corrosion-resistant rebars may be required to ensure the longevity and structural integrity of the project. The size and shape of the rebars also play a role in their selection. The diameter of the rebar is determined by the structural requirements and the concrete cover thickness. The shape of the rebar, whether it is plain, deformed, or ribbed, also affects its bonding with the surrounding concrete. The availability and cost of the rebars are important factors as well. Some grades or types of steel rebars may be more readily available in certain regions, while others may need to be imported. The cost of the rebars will also influence the selection, as different grades and types may have varying price points. Lastly, the specifications and requirements set by local building codes and regulations must be considered. These codes often dictate the minimum standards for strength, corrosion resistance, and other factors that must be met by the rebars used in construction. Overall, the factors that determine the selection of steel rebars include required strength, corrosion resistance, size and shape, availability and cost, and compliance with local building codes and regulations. By considering these factors, engineers and construction professionals can select the most suitable rebars for their projects to ensure safety, durability, and cost-effectiveness.
Q:Why can't grounding steel be used?
When the thread steel is grounded, the contact with the soil is not dense, and the grounding resistance value is increased
Q:How do steel rebars contribute to the seismic performance of a structure?
Steel rebars contribute to the seismic performance of a structure by enhancing its strength and ductility. When embedded in concrete, rebars act as reinforcement, providing tensile strength to resist the forces generated during an earthquake. This reinforcement helps prevent cracking and failure in the concrete, allowing the structure to better absorb and dissipate seismic energy. Additionally, the flexibility and high yield strength of steel rebars enable them to deform and absorb seismic forces, reducing the likelihood of structural collapse during an earthquake.
Q:How do steel rebars provide strength to concrete structures?
Steel rebars provide strength to concrete structures by acting as reinforcement. When embedded within the concrete, rebars enhance its tensile strength, which is otherwise low. As concrete is strong in compression but weak in tension, the rebars resist the tensile forces that can cause cracking or failure in the structure. By distributing and absorbing these tensile forces, steel rebars increase the overall strength, durability, and structural integrity of the concrete.
Q:What are the guidelines for the proper curing of concrete with steel rebars?
The guidelines for the proper curing of concrete with steel rebars include ensuring a moist and controlled environment for the concrete to cure. This can be achieved by covering the concrete with a plastic sheet or using curing compounds. It is important to avoid rapid drying or exposure to extreme temperatures during the curing process. Additionally, regular monitoring of the curing process and proper hydration of the concrete are crucial to ensure the rebars bond effectively with the concrete and achieve maximum strength.
Q:What are the guidelines for the proper spacing of steel rebars in columns?
Various national and international codes and standards, such as the American Concrete Institute (ACI) and the British Standards Institution (BSI), provide guidelines for the proper spacing of steel rebars in columns. These guidelines are crucial in ensuring the durability and structural integrity of reinforced concrete columns. The spacing of steel rebars in columns is primarily influenced by the following factors: 1. Concrete cover: Codes specify a minimum concrete cover to protect the steel reinforcement from corrosion and provide fire resistance. The spacing between rebars should maintain a uniform concrete cover around each rebar. 2. Rebar diameter: The size or diameter of rebars affects their spacing. Codes mandate a minimum clear spacing between adjacent rebars based on their diameter to prevent congestion and ensure proper concrete placement. 3. Column dimension: The size and shape of the column play a significant role in determining rebar spacing. Larger columns may require more rebars compared to smaller ones to provide sufficient reinforcement and resist applied loads. 4. Load and design requirements: Design loads, including dead loads, live loads, and seismic loads, impact rebar spacing. Codes provide guidelines on the minimum amount of reinforcement required based on column dimensions and anticipated loads. 5. Structural detailing: Proper detailing is crucial to ensure rebars are adequately anchored and lapped, developing the required bond strength. Codes provide guidelines for lapping lengths, anchorage lengths, and splices to ensure force transfer between rebars and concrete. Consulting the specific code or standard applicable in your region is crucial to determine the exact guidelines for rebar spacing in columns. It is also recommended to involve a qualified structural engineer or designer to perform detailed analysis and design of reinforced concrete columns, ensuring compliance with the appropriate guidelines and achieving a safe and efficient structural system.
Q:What is the impact of steel rebars on the overall sustainability of a project?
Steel rebars have a significant impact on the overall sustainability of a project. Firstly, they contribute to the durability and structural integrity of buildings and infrastructure, enhancing their lifespan and reducing the need for frequent repairs or replacements. Secondly, steel rebars are recyclable, reducing the demand for virgin materials and minimizing the environmental impact associated with mining and production. Additionally, their use in reinforced concrete can increase energy efficiency by enabling the construction of thinner and lighter structures, resulting in reduced carbon emissions during transportation and construction. Overall, steel rebars positively contribute to the sustainability of a project through improved longevity, recyclability, and energy efficiency.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords