• Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel System 1
  • Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel System 2
Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel

Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information

Chemical Composition(GB)%

C

Si

Mn

Cr

Cu

S

0.95-1.05

0.15-0.35

0.25-0.45

1.4-1.65

≤0.20

≤0.020

 

Heat Treatment

Item

Temperature ℃

Hardness

Anneal

790-810

170-207HB

Quenching

830-860

62-66HRC

Tempering

150-180

61-66HRC

 

Characterstics

1.Uniform hardness,Good abrasion resistance

2.High contact fatigue resistance

3.Cutting performance in general

 

Applications: Used to make the load of the larger small cross-section conditioning and stress smaller large parts


Product show

.jpg

Workshop show

Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel

Q:How is special steel used in the production of consumer goods?
Special steel is used in the production of consumer goods due to its superior strength, durability, and corrosion resistance. It is commonly used in manufacturing appliances, cutlery, automotive components, and construction materials, ensuring the end-products meet high-quality standards and have a longer lifespan.
Q:How does stainless steel contribute to the production of medical implants?
Stainless steel contributes to the production of medical implants primarily due to its exceptional properties such as corrosion resistance, high strength, biocompatibility, and ease of sterilization. These qualities make stainless steel an ideal material for manufacturing various medical implants like joint replacements, bone plates, screws, and dental implants.
Q:How is the toughness of special steel measured?
The toughness of special steel is typically measured using specific tests and methodologies that evaluate its ability to absorb energy and resist fracture. One common method is the Charpy V-Notch (CVN) test, which involves striking a notched specimen with a pendulum hammer and measuring the energy absorbed during fracture. The results are expressed as the amount of energy absorbed per unit area, usually in joules per square centimeter (J/cm²) or foot-pounds per square inch (ft-lb/in²). Another test commonly used is the Izod test, which is similar to the CVN test but uses a different specimen geometry. Additionally, other mechanical tests like tensile strength, impact strength, and fracture toughness measurements can also be used to assess the toughness of special steel. These tests help engineers and manufacturers determine the suitability of special steel for various applications, especially those that require high resistance to impact or sudden loading.
Q:What are the different methods for improving the impact resistance of special steel?
There are several methods available for improving the impact resistance of special steel. These methods can be broadly categorized into heat treatment, alloying, and surface treatments. 1. Heat Treatment: One of the most common methods for improving impact resistance is heat treatment. This involves subjecting the steel to controlled heating and cooling processes to alter its microstructure. The two main heat treatment processes used for improving impact resistance are tempering and quenching. Tempering involves heating the steel to a specific temperature and then cooling it slowly. This process helps to relieve internal stresses and improve toughness. Quenching, on the other hand, involves rapidly cooling the steel after heating it to a high temperature. This process results in a hardened microstructure, enhancing the impact resistance. 2. Alloying: Another method for improving the impact resistance of special steel is through alloying. By adding certain elements to the base steel, the properties can be enhanced. For example, adding elements such as manganese, nickel, or chromium can improve the toughness and impact resistance of the steel. These alloying elements alter the steel's microstructure, resulting in increased strength and resistance to deformation. 3. Surface Treatments: Surface treatments are used to improve the impact resistance of special steel by providing a protective layer on the surface. One commonly used surface treatment is case hardening, which involves introducing carbon or nitrogen into the surface layer of the steel. This process creates a hard outer layer while retaining a tough core, enhancing the impact resistance. Another surface treatment method is shot peening, which involves bombarding the steel surface with small metal or ceramic particles under high pressure. This process induces compressive stresses in the surface layer, improving the fatigue resistance and impact resistance of the steel. In conclusion, the different methods for improving the impact resistance of special steel include heat treatment, alloying, and surface treatments. These methods can be employed individually or in combination to enhance the mechanical properties of the steel, making it more resistant to impact and deformation.
Q:How does the microstructure of special steel affect its performance?
The performance of special steel greatly depends on its microstructure. To enhance their properties and meet specific application requirements, special steels are alloyed with specific elements. The microstructure refers to how the steel's crystalline grains are arranged and whether any phase transformations are present within the material. One important aspect of the microstructure is the size of the grains. Through controlled cooling or adding alloys, fine-grained structures can be achieved, leading to improved strength, hardness, and toughness. Smaller grain sizes restrict the movement of dislocations within the material, resulting in increased strength and hardness. This is particularly crucial in applications where high strength-to-weight ratios are needed, such as aerospace or automotive components. The presence of different phases in the microstructure is another critical factor. By adding specific alloying elements, the formation of various phases like martensite, bainite, or ferrite can be promoted. These phases possess different mechanical properties, including hardness, toughness, and corrosion resistance. By carefully controlling the microstructure, it becomes possible to customize the steel's performance for specific applications. For instance, martensitic structures offer high hardness and wear resistance, making them ideal for cutting tools, while bainitic structures provide a good balance of strength and toughness, making them suitable for structural components. Moreover, the microstructure also determines how the steel responds to heat treatment processes like quenching and tempering. Heat treatments can modify the microstructure to achieve desired mechanical properties, such as increasing hardness or improving resistance to fatigue. The ability of the microstructure to transform during heat treatment enables precise control over the steel's performance characteristics. In conclusion, the microstructure of special steel has a significant impact on its performance. Grain size, phase distribution, and response to heat treatment are all crucial factors that influence the steel's mechanical properties and suitability for specific applications. By understanding and manipulating the microstructure, engineers can design special steels with enhanced performance, meeting the demanding requirements of various industries.
Q:What are the different casting grades of special steel?
Special steel is a classification of steel that is specifically designed to possess certain exceptional properties, making it suitable for specialized applications. Within the realm of special steel, there are several different casting grades available, each with its own unique characteristics and applications. One common casting grade of special steel is known as stainless steel. This grade contains a high percentage of chromium, which gives it excellent corrosion resistance properties. Stainless steel is widely used in applications where resistance to oxidation, acids, and other corrosive elements is critical, such as in the production of kitchen utensils, medical instruments, and chemical processing equipment. Another casting grade of special steel is tool steel. This grade is specifically formulated to exhibit exceptional hardness, wear resistance, and toughness. Tool steel is commonly used in the manufacturing of cutting tools, dies, molds, and other tools that require high strength and durability. High-speed steel is another important casting grade of special steel. This grade is known for its exceptional heat resistance and ability to maintain its hardness even at high temperatures. High-speed steel is widely used in the production of cutting tools such as drills, taps, and milling cutters, where the material is subjected to high temperatures generated by the cutting process. Furthermore, there are casting grades of special steel that are specifically designed for use in extreme temperature environments. These grades, such as heat-resistant steel, are formulated to maintain their strength and integrity even at elevated temperatures. Heat-resistant steel is commonly used in applications such as furnace components, exhaust systems, and gas turbines. In conclusion, the different casting grades of special steel offer a wide range of properties and applications. Stainless steel provides excellent corrosion resistance, tool steel offers exceptional hardness and toughness, high-speed steel is known for its heat resistance, and heat-resistant steel is designed to withstand extreme temperatures. These grades of special steel play a crucial role in various industries where exceptional properties are required for specific applications.
Q:How does special steel contribute to the pharmaceutical industry?
Special steel plays a crucial role in the pharmaceutical industry by offering exceptional strength, corrosion resistance, and durability. It is used in the manufacturing of various equipment and components such as storage tanks, reactors, piping systems, and precision instruments. The unique properties of special steel ensure the integrity and purity of pharmaceutical products, prevent contamination, and enable efficient and safe production processes.
Q:How is special steel used in the construction of buildings and bridges?
Special steel is commonly used in the construction of buildings and bridges due to its exceptional strength, durability, and resistance to corrosion. This type of steel possesses unique properties that make it ideal for structural components such as beams, columns, and reinforcement bars. Its high tensile strength allows for the creation of large, open spaces in buildings and longer spans in bridges, reducing the need for excessive support columns. Additionally, special steel's ability to withstand extreme weather conditions and corrosive environments ensures the longevity and safety of these structures.
Q:What are the common challenges in forging special steel?
Common challenges in forging special steel include achieving the desired grain structure, maintaining uniformity and consistency throughout the material, controlling the temperature during the forging process, preventing cracks and defects, and ensuring proper heat treatment for the desired mechanical properties.
Q:Can special steel be used for musical instruments?
Yes, special steel can be used for musical instruments. Steel alloys such as stainless steel or carbon steel are commonly used in the construction of certain musical instruments, particularly those requiring durability and resistance to corrosion. Examples include steel drums, certain percussion instruments, and parts of brass instruments like trumpets.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords