• Steel 4Cr13 Alloy Steel Round Bar Special Steel System 1
  • Steel 4Cr13 Alloy Steel Round Bar Special Steel System 2
  • Steel 4Cr13 Alloy Steel Round Bar Special Steel System 3
Steel 4Cr13 Alloy Steel Round Bar Special Steel

Steel 4Cr13 Alloy Steel Round Bar Special Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical Composition(GB)%

CSiMnCrPS
0.40.50.713≤0.030≤0.030

 

Standard

GBASTM DINJIS
4Cr134.21.2083420J2

 

Available Size

Rolled plate12-120mm*720mm*6000mm
Module130-400mm*1000mm*6000mm

 

Heat Treatment

ProcessingTemperature ℃Hardness
Anneal750-800≤235HB
Quenching1050-1100≥50HRC
Tempering200-300≥50HRC

 

Characterstics

1.High corrosion resistance and mirror performance
2.Higher strength and abrasion resistance

 

Applications:

Suitable for precise dies with super mirror performance and abrasion resistance,camera components,optical lens

Product Show:

.jpg

Steel 4Cr13 Alloy Steel Round Bar Special Steel

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

    WE provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.


Q:What are the main factors affecting the creep resistance of special steel?
The creep resistance of special steel is determined by several factors, namely composition, microstructure, and processing conditions. The creep resistance is greatly affected by the composition of the steel. The presence of alloying elements like chromium, molybdenum, and vanadium can enhance creep resistance by forming stable precipitates or carbides that impede the movement of dislocations. These alloying elements also contribute to the formation of a protective oxide layer, which further improves resistance to creep. Microstructure is another crucial factor in determining creep resistance. Proper heat treatment or alloying can lead to the formation of fine-grained structures, which hinder dislocation movement and enhance material strength, thereby improving creep resistance. Grain boundaries also act as barriers to dislocation motion, reducing the rate of creep. Processing conditions, such as heat treatment and deformation processes, have a significant impact on creep resistance. The choice of heat treatment parameters, including temperature and cooling rate, can affect the precipitation of strengthening phases and the formation of an ideal microstructure. Appropriate deformation processing, such as hot or cold working, can refine the grain structure and enhance creep resistance. Temperature, stress, and time are additional factors that influence creep resistance. Higher temperatures accelerate creep deformation, while higher applied stresses increase the rate of creep. The duration of exposure to elevated temperatures and stresses also plays a role, as prolonged exposure can lead to creep failure. To summarize, the creep resistance of special steel is influenced by various factors, including composition, microstructure, processing conditions, temperature, stress, and time. By carefully considering and optimizing these factors, the creep resistance of special steel can be enhanced, making it suitable for applications that require high temperatures and long-term durability.
Q:How does special steel contribute to the manufacturing of turbine blades?
Special steel plays a crucial role in the manufacturing of turbine blades as it offers exceptional mechanical properties, such as high strength, corrosion resistance, and heat resistance. These properties enable turbine blades to withstand extreme operating conditions, including high temperatures and pressures. Additionally, the specific composition of special steel allows for precise shaping and intricate designs, which optimize the aerodynamic efficiency of the blades. Overall, special steel enables the production of turbine blades that are durable, efficient, and capable of withstanding the demanding conditions of power generation.
Q:How does special steel contribute to the fatigue resistance of products?
Special steel contributes to the fatigue resistance of products through its unique properties and manufacturing processes. Firstly, special steel is specifically designed and engineered to have enhanced strength and durability, making it highly resistant to fatigue. This is achieved by incorporating alloying elements such as chromium, nickel, molybdenum, and vanadium, which improve the material's ability to withstand cyclic loading and stress. In addition, special steel undergoes rigorous heat treatment processes, such as quenching and tempering, to further enhance its fatigue resistance. These processes help refine the microstructure of the steel, resulting in a more uniform and fine-grained material. This, in turn, improves the steel's resistance to crack initiation and propagation, which are key factors leading to fatigue failure. Moreover, special steel often undergoes specialized surface treatments, such as shot peening or nitriding, which introduce compressive residual stresses on the surface of the material. These compressive stresses act as a barrier against crack formation and growth, significantly enhancing the fatigue resistance of the product. Additionally, special steel can be manufactured with specific grain orientations, such as through the use of directional solidification techniques. This allows for the alignment of grains along the primary loading direction, improving the material's fatigue performance by reducing the likelihood of crack initiation at grain boundaries. Overall, the unique properties and manufacturing processes associated with special steel contribute to its exceptional fatigue resistance. Its enhanced strength, refined microstructure, specialized surface treatments, and tailored grain orientations all work together to prolong the lifespan and reliability of products, making special steel a preferred choice in various industries where fatigue failure is a concern.
Q:How does special steel contribute to the energy industry?
Special steel plays a crucial role in the energy industry by providing high-performance materials that are essential for the construction and operation of various energy infrastructure. It is used in the manufacturing of turbines, generators, pipelines, and other components of power plants, helping to enhance their efficiency and reliability. Special steel's superior strength, corrosion resistance, and heat resistance properties make it suitable for withstanding the demanding conditions and extreme temperatures in power generation and transmission. Additionally, special steel is used in the production of renewable energy equipment such as wind turbines and solar panels, further contributing to the sustainable growth of the energy industry.
Q:How is martensitic steel used in knife making?
Martensitic steel is widely used in knife making due to its excellent hardness, strength, and ability to hold a sharp edge. This type of steel undergoes a specific heat treatment process called quenching, which transforms its microstructure, resulting in a hard and durable blade. The high carbon content in martensitic steel enables it to be heat-treated to achieve different levels of hardness, tailored to specific knife requirements. Additionally, martensitic steel offers good corrosion resistance, making it an ideal choice for various knife applications, from everyday kitchen knives to high-performance hunting or tactical knives.
Q:Can special steel be recycled?
Yes, special steel can be recycled.
Q:What are the main applications of special steel in the chemical industry?
Special steel is extensively used in the chemical industry for various applications. Some of the main applications include the manufacturing of storage tanks, pipelines, and equipment that require resistance to corrosion, high temperatures, and pressure. Special steel also finds use in the production of catalysts, which are vital for many chemical processes. Additionally, it is employed in the construction of reactors, heat exchangers, and other critical components that require exceptional durability and reliability in harsh chemical environments.
Q:How does special steel perform in corrosion fatigue conditions?
Special steel performs well in corrosion fatigue conditions due to its high resistance to corrosion and fatigue. It is specifically designed to withstand harsh environments and prolonged exposure to corrosive elements. Special steel undergoes various treatments and alloying processes to enhance its corrosion resistance and mechanical properties. This allows it to maintain its structural integrity and performance even under corrosive and fatigue-inducing conditions.
Q:How does special steel contribute to the oil and gas equipment industry?
Enhanced strength, corrosion resistance, and heat resistance are crucial attributes of special steel, which plays a vital role in the oil and gas equipment industry. This type of steel is specifically engineered to endure the extreme conditions encountered during oil and gas exploration, extraction, and processing. The superior strength of special steel is one of its primary advantages in this industry. Oil and gas equipment, such as drill pipes, wellheads, and pipelines, are subjected to high pressure, heavy loads, and harsh environments. Thanks to its high tensile and yield strength, special steel ensures that these components can withstand such demanding conditions without experiencing failures, thus guaranteeing the safety and reliability of the equipment. Another significant benefit of special steel in the oil and gas equipment industry is its corrosion resistance. The extraction and transportation of oil and gas involve exposure to corrosive substances, such as hydrogen sulfide, carbon dioxide, and saltwater. Special steel is specifically designed to resist corrosion, thereby minimizing the risk of equipment degradation, leaks, and costly maintenance. Furthermore, special steel possesses excellent heat resistance properties. The oil and gas industry often operates equipment at high temperatures during processes such as oil refining, gas compression, or steam injection. The ability of special steel to withstand high temperatures without compromising its mechanical properties makes it an ideal choice for critical components like valves, heat exchangers, and turbines. The use of special steel also enables the oil and gas industry to explore and extract resources from challenging environments. Offshore drilling rigs, for instance, encounter harsh conditions such as strong waves, saltwater exposure, and extreme temperatures. Special steel's resistance to these environmental factors ensures the durability and longevity of offshore equipment. In conclusion, special steel significantly contributes to the oil and gas equipment industry by providing enhanced strength, corrosion resistance, and heat resistance. By employing this type of steel, the industry can ensure the reliability, safety, and longevity of its equipment, ultimately improving operational efficiency and reducing downtime.
Q:What are the main properties of special steel?
Special steel is characterized by a variety of properties that set it apart from regular steel. Some of its key properties include high strength, excellent corrosion resistance, superior heat resistance, exceptional toughness, and good wear resistance. Additionally, special steel can be easily machined, welded, and formed, making it highly versatile for various industrial applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords