• Cr12/1.2080/BD3/SKD1/D3 High Carbon Steel Plate System 1
  • Cr12/1.2080/BD3/SKD1/D3 High Carbon Steel Plate System 2
Cr12/1.2080/BD3/SKD1/D3 High Carbon Steel Plate

Cr12/1.2080/BD3/SKD1/D3 High Carbon Steel Plate

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Sheet
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical Composition(%)

CSiMnPSCr
2.00-2.30≤0.40≤0.40≤0.030≤0.03011.50-13.00

Available Size

Rolled flat steel12-90mm×205-610mm×L
Forged flat steel100-300mm×400-600mm×L

Heat Treatment

ItemTemperature ℃Hardness
Anneal750-760≤255HB
Quenching950-98059-63HRC
Tempering180-35058-62HRC

Characterstics 

1.High hardening ability and abrasion resistance
2.Less quenching deformation 
3.High toughness and more homogeneous carbide distribution

 

Applications: Suitable for various complicated cold working dies with high precision and long lifetime,such as punching dies,cold extrusion dies,thread rolling dies,screw plates,cold extrusion dies,and precise measuring devices


Product show:

.jpg

Workshop show:

Cr12/1.2080/BD3/SKD1/D3 High Carbon Steel Plate

FAQ:

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

5, After-sale Service?

     We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

     We'll reply you in our first priority within 24 hours.



Q:Can special steel be used in the marine industry?
Yes, special steel can be used in the marine industry. Special steel alloys, such as stainless steel or corrosion-resistant steel, are frequently used in the marine industry due to their high strength, durability, and resistance to corrosion from saltwater. These specific steel types are essential for various marine applications, including shipbuilding, offshore structures, and marine equipment, as they can withstand the harsh conditions and corrosive environment of seawater.
Q:What are the applications of special steel in the marine sector?
Marine grade steel, also known as special steel, finds a wide range of applications in the marine sector. Shipbuilding is one key use of this steel in the industry, as its high resistance to corrosion makes it perfect for constructing ships and other marine vessels constantly exposed to harsh weather conditions and saltwater. Another significant application of special steel in the marine sector is for offshore structures. Materials used in offshore platforms like oil rigs and wind turbines need to withstand the harsh marine environment, including corrosion, high pressure, and extreme temperatures. Special steel's exceptional strength and durability make it the preferred choice for these structures. Furthermore, special steel is employed in the manufacturing of marine equipment and components. For instance, propeller shafts, anchor chains, and underwater pipelines often use special steel due to its excellent mechanical properties and corrosion resistance. Marine engines also rely on special steel to ensure reliable performance and longevity. Moreover, special steel is utilized in the construction of port infrastructure such as piers, docks, and harbor structures. These structures must endure constant exposure to seawater, heavy loads, and dynamic forces, making special steel an ideal material choice for their construction. In conclusion, special steel plays a vital role in the marine sector with its numerous applications. Its corrosion resistance, strength, and durability make it an essential material for shipbuilding, offshore structures, marine equipment, and port infrastructure. The utilization of special steel ensures the longevity and reliability of marine assets operating in harsh marine environments.
Q:What is the composition of special steel?
Special steel's composition may vary depending on its intended use and the specific properties needed. Generally, it is an alloy of iron and carbon, with additional elements incorporated to enhance its strength, toughness, corrosion resistance, and other desired characteristics. Commonly found alloying elements in special steel compositions include chromium, nickel, manganese, molybdenum, vanadium, tungsten, and cobalt. These elements are meticulously chosen and added in precise quantities to attain the desired mechanical, physical, and chemical properties of the steel. The composition of special steel can be customized to meet industry-specific requirements, such as those in aerospace, automotive, oil and gas, or construction.
Q:How does special steel contribute to the overall economy?
Special steel contributes to the overall economy in several ways. Firstly, it plays a crucial role in various industries such as automotive, construction, and manufacturing, where it is used for producing high-performance components and structures. This fosters innovation, enhances productivity, and drives economic growth. Additionally, the production and processing of special steel create employment opportunities, both directly and indirectly, stimulating job growth and income generation. Moreover, special steel exports contribute to trade balance and foreign exchange earnings, further bolstering the economy. Overall, the utilization of special steel in diverse sectors strengthens industrial competitiveness, supports economic development, and fuels economic prosperity.
Q:How does special steel contribute to the aerospace racing industry?
The aerospace racing industry heavily relies on special steel due to its superior strength, durability, and performance characteristics, which are essential for the demanding conditions and requirements of high-speed racing. One of the primary contributions of special steel to the aerospace racing industry lies in its capacity to withstand extreme temperatures and pressures. Special steel alloys, such as nickel-based superalloys, are specifically designed to maintain their mechanical properties even under high temperatures. This makes them highly suitable for withstanding the intense heat generated during racing. These alloys also exhibit exceptional creep resistance, enabling the components to endure prolonged exposure to elevated temperatures without experiencing any deformation or failure. Furthermore, special steel alloys possess remarkable strength-to-weight ratios, giving the aerospace racing industry a competitive advantage. The high strength of these alloys allows for the design and construction of lighter and more efficient racing components, including engine parts, landing gears, and structural elements. As a result, the overall weight of the aircraft is reduced, thereby enhancing its performance and speed while ensuring structural integrity and safety. In addition, special steel offers excellent corrosion resistance, which is crucial in the aerospace racing industry. The harsh conditions encountered during racing, such as exposure to moisture, chemicals, and atmospheric elements, can lead to corrosion and deterioration of vital components. However, special steel alloys, such as stainless steel, demonstrate high resistance to corrosion, guaranteeing the longevity and reliability of racing aircraft. Moreover, the unique metallurgical properties of special steel, such as high fatigue and fracture resistance, contribute significantly to the safety and reliability of the aerospace racing industry. The high fatigue strength of these alloys allows them to withstand repeated loading and unloading cycles without developing cracks or experiencing failures. This is particularly important in high-speed racing, where components undergo significant stress and strain. Additionally, special steel's exceptional fracture toughness ensures that any potential cracks or flaws do not propagate catastrophically, minimizing the risk of catastrophic failures during racing. In conclusion, special steel plays a critical role in the aerospace racing industry by providing superior strength, durability, and performance characteristics. Its ability to withstand extreme temperatures, offer excellent strength-to-weight ratios, resist corrosion, and exhibit high fatigue and fracture resistance make it an indispensable material for constructing racing aircraft components. Ultimately, the use of special steel in the aerospace racing industry enhances the performance, speed, safety, and reliability of racing aircraft, pushing the boundaries of aerospace technology and propelling the industry forward.
Q:What are the different standards and specifications for special steel?
There are several standards and specifications for special steel, which vary depending on the specific type and application of the steel. Some common standards include AISI (American Iron and Steel Institute), ASTM (American Society for Testing and Materials), EN (European Norm), and JIS (Japanese Industrial Standards). These standards define the chemical composition, mechanical properties, and manufacturing processes required for special steel to meet certain quality and performance standards. Additionally, there may be specific specifications for different industries or applications, such as aerospace, automotive, or construction, that further define the requirements for special steel.
Q:What are the disadvantages of using special steel?
One disadvantage of using special steel is its higher cost compared to regular steel. Special steel typically requires additional alloying elements and manufacturing processes, making it more expensive to produce. Additionally, special steel may have limited availability and require specialized knowledge and equipment for fabrication and handling.
Q:How does special steel contribute to the construction of bridges?
Special steel plays a crucial role in the construction of bridges by providing enhanced strength, durability, and resilience, thereby ensuring the structural integrity and safety of these vital infrastructure projects. One of the key benefits of special steel in bridge construction is its high tensile strength, which allows the material to withstand heavy loads and extreme weather conditions. This strength is particularly important in large-span bridges, where the steel must bear significant weight and resist forces such as wind, earthquakes, and traffic vibrations. Special steel also offers superior corrosion resistance, which is essential in bridges exposed to harsh environments, such as those near coastal areas where saltwater can be highly corrosive. By preventing or minimizing corrosion, the lifespan of the bridge is significantly extended, reducing maintenance and repair costs. Moreover, special steel can be fabricated to precise specifications, allowing for the creation of complex bridge designs and innovative structural solutions. This versatility enables engineers to design bridges that are not only functional but also aesthetically pleasing. In summary, special steel is a critical component in bridge construction due to its strength, durability, corrosion resistance, and versatility. Its use ensures the longevity, safety, and efficiency of bridges, ultimately benefiting the communities they serve.
Q:How does the hardness of special steel affect its performance?
The performance of special steel is heavily influenced by its hardness, which is determined by its ability to resist indentation, scratching, or deformation. This property is directly linked to the steel's microstructure and carbon content. When special steel is hardened, it goes through a heat treatment process, which typically involves rapid cooling or quenching after being heated to high temperatures. This process alters the steel's microstructure, resulting in a harder material. The increased hardness brings several advantages to the performance of special steel. Firstly, a higher level of hardness enhances the wear resistance of special steel. This is particularly important in applications where the steel is exposed to abrasive or erosive forces, such as cutting tools or machinery components. A harder steel can endure these forces without significant wear or damage, leading to improved longevity and reliability. Secondly, the hardness of special steel affects its strength and toughness. A harder steel generally exhibits higher strength, enabling it to withstand greater forces without permanent deformation or failure. This property is beneficial in applications where the steel faces heavy loads or impacts. Additionally, a certain level of toughness is necessary to prevent brittle fractures. While high hardness can make a steel more brittle, careful heat treatment can strike a balance between hardness and toughness, ensuring the steel remains strong and resistant to fracture. Furthermore, the hardness of special steel also influences its machinability. Hardened steel can be more difficult to machine due to its increased resistance to cutting tools. However, it offers greater dimensional stability and precision during machining operations, resulting in more accurate and consistent results. In conclusion, the hardness of special steel has a significant impact on its performance. A higher level of hardness provides improved wear resistance, strength, and toughness, making it suitable for demanding applications. However, it is crucial to carefully consider the balance between hardness and toughness to avoid brittleness. Therefore, understanding and controlling the hardness of special steel is essential for optimizing its performance in various industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords