• Zirconia Slide Gate Nozzle for Steel Industry System 1
  • Zirconia Slide Gate Nozzle for Steel Industry System 2
  • Zirconia Slide Gate Nozzle for Steel Industry System 3
Zirconia Slide Gate Nozzle for Steel Industry

Zirconia Slide Gate Nozzle for Steel Industry

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

                                  Zirconia Slide Gate Nozzle for Steel Industry

Slide gate plate widely used in large ladle, middle ladle and small ladle to fit for high quality steel casting.

Slide gate plate widely including Alumina carbon and Alumina Zirconia Carbon slide gate plate, MgO and MgO-spinel slide gate plate,nonoxides bonding slide gate plateand unburned slide gate plate.

Burnt Slide gate

Item

B60,B50,C40type

Al-C Slide Gate

Al-Zr-C Slide Gate 

AlC-70

AlC -75

AlC -80

AlC-85

AlC -86

AlZrC -70

AlZrC-75

AlZrC -77

Al2O3,%

70

75

80

85

86

70

75

77

C+SiC,%

7

7

5

5

4

7

7

7

ZrO2,%

-

-

-

-

-

6

6

2.5

A.P.,% max

10

10

10

10

7

10

10

10

B.D.,g/cm3

2.8

2.9

2.9

3.0

2.95

3.00

3.05

2.90

C.C.S., MPa min

65

70

100

100

100

110

115

100

 

Unburned compound AlC Slide gate

Item

B60,B50,C40type

Al-C Slide Gate 

AlC-70A

AlC-75A

AlC-80A

AlC-85A

AlC-86A

Al2O3,% 

70

75

80

85

86

C,%

7

7

5

5

4

A.P.,% max

10

10

8

10

7

B.D. g/cm3 min

2.8

2.9

3.0

3.0

2.95

C.C.S., MPa min

65

70

100

100

100

 

zirconium core :

Item             

ZN-

65

ZN-

70

ZN-

75

ZN-

80

ZN-

85

ZN-

90

ZN-

93A

ZN-

93B

ZN-

93C

ZN-

93D

ZN-

95A

ZN-

95B

ZN-

96

ZrO2(%)

≥65

≥70

≥75

≥80

≥85

≥90

≥93

≥93

≥93

≥93

≥95

≥95

≥96

Bulk density

(g/cm3)

≥3.8

≥3.8

≥3.9

≥4.0

≥4.1

≥4.3

≥5.1

≥4.9

≥4.7

≥4.4

≥4.6

≥5.2

≥5.2

Apparent Porosity(%)

≤23

≤22

≤22

≤20

≤20

≤20

≤13

≤15

≤18

≤20

≤20

≤9

≤5.6

Thermal shock resistance

(cycles)(1100℃,water cooling)

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>8

>10



FAQ

We have organized several common questions for our clients,may help you sincerely:

①How about your company?

A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.



Q:What is the role of monolithic refractories in blast furnaces?
Monolithic refractories play a crucial role in blast furnaces as they provide high temperature resistance, erosion and corrosion resistance, thermal insulation, and structural integrity. These refractories are used to line the inside of the blast furnace, forming a protective barrier against the extreme heat and chemical reactions occurring within. They help to maintain the integrity of the furnace and ensure its efficient operation by withstanding the aggressive conditions of the molten iron and slag. Additionally, monolithic refractories allow for easier installation and repair compared to traditional brick refractories, making them a preferred choice in blast furnace applications.
Q:What types of monolithic refractories are commonly used in the iron and steel industry?
In the iron and steel industry, several types of monolithic refractories are commonly used due to their high resistance to extreme temperatures and mechanical stresses. These refractories are essential for lining furnaces, ladles, and other equipment used in the production of iron and steel. One commonly used monolithic refractory in this industry is castable refractory. It is a mixture of refractory aggregates, binders, and additives that can be poured or cast into various shapes and sizes. Castable refractories are versatile and can be easily installed, making them suitable for lining large furnaces and ladles. They offer good thermal insulation and excellent resistance to thermal shocks. Another type of monolithic refractory used in the iron and steel industry is plastic refractory. It consists of a high-alumina refractory aggregate mixed with a bonding agent, usually clay. Plastic refractories have a high plasticity and can be easily shaped by hand or with a trowel. They are commonly used for repairs and patching in furnaces and ladles. Ramming refractories are also commonly employed in the iron and steel industry. These refractories are made of granular refractory materials mixed with a binder. They are installed by ramming the mixture into the desired shape using a pneumatic hammer or manual ramming tools. Ramming refractories offer high resistance to abrasion and erosion, making them suitable for lining the bottoms of furnaces and other areas subjected to intense mechanical wear. Lastly, gunning refractories are frequently used in the iron and steel industry. Gunning refractories are made of fine refractory powders mixed with water or a bonding agent. They are applied using a gunning machine, which propels the refractory material onto the surface to be lined. Gunning refractories are commonly used for repairing and maintaining the linings of ladles, tundishes, and other equipment. Overall, the iron and steel industry relies on a variety of monolithic refractories such as castables, plastics, rammings, and gunnings to ensure the reliable and efficient operation of their equipment in high-temperature environments. These refractories provide excellent thermal insulation, resistance to thermal shocks, and mechanical strength essential for the production of iron and steel.
Q:How do monolithic refractories contribute to the overall reliability of iron and steel processes?
Enhancing the overall reliability of iron and steel processes is a significant role played by monolithic refractories. These refractories are specifically designed to withstand extreme temperatures and harsh conditions commonly found in iron and steel manufacturing environments. Superior insulation is one key contribution of monolithic refractories. With their low thermal conductivity, they effectively reduce heat loss from the furnace or kiln. This insulation property allows for efficient energy usage and helps maintain stable operating conditions, resulting in consistent and reliable production. Furthermore, monolithic refractories offer excellent resistance to chemical attacks caused by molten metals, slag, and other corrosive substances. They can withstand the high alkalinity and high temperature of molten iron and steel, preventing any damage to the refractory lining. This resistance ensures the longevity of the refractory material, minimizing the need for frequent maintenance and replacement, thus contributing to the overall reliability of the iron and steel processes. Moreover, even at elevated temperatures, monolithic refractories exhibit good mechanical strength and stability. This strength enables them to withstand the mechanical stresses and strains exerted during the iron and steel manufacturing processes, such as thermal cycling, mechanical impact, and abrasion. By maintaining their structural integrity, monolithic refractories prevent the formation of cracks or spalling, which could lead to downtime or even catastrophic failure. This reliability ensures uninterrupted operations and reduces the risk of costly shutdowns. Additionally, monolithic refractories offer flexibility when it comes to installation and repair. They can be easily shaped and applied to various furnace shapes and sizes, allowing for efficient lining construction. Moreover, monolithic refractories can be repaired or patched quickly, minimizing downtime and maintaining the operational reliability of the iron and steel processes. To summarize, monolithic refractories contribute significantly to the overall reliability of iron and steel processes. They provide superior insulation, resistance to chemical attacks, mechanical strength, and flexibility in installation and repair. By ensuring consistent performance, durability, and reduced maintenance requirements, monolithic refractories play a crucial role in optimizing the efficiency and reliability of iron and steel manufacturing operations.
Q:What are the main causes of monolithic refractory failure in the iron and steel industry?
The main causes of monolithic refractory failure in the iron and steel industry include thermal cycling, chemical attack, mechanical wear, and improper installation or curing.
Q:How do monolithic refractories contribute to reducing emissions in iron and steel processes?
Monolithic refractories play a crucial role in reducing emissions in iron and steel processes by providing a more efficient and sustainable lining solution compared to traditional brick refractories. Firstly, monolithic refractories are characterized by their homogeneous structure, which allows for easier installation and repair. This feature reduces the downtime required for maintenance, resulting in increased productivity and ultimately lower emissions. In contrast, brick refractories require more extensive labor and time-consuming procedures for installation and repair, leading to longer shutdown periods and increased emissions. Moreover, monolithic refractories exhibit superior thermal insulation properties. By minimizing heat loss from the furnace or kiln, they enable higher energy efficiency and reduce the fuel consumption required for achieving the desired temperature. This reduction in fuel usage directly translates to lower emissions of greenhouse gases, such as carbon dioxide, contributing to the overall environmental sustainability of iron and steel processes. Additionally, monolithic refractories offer excellent resistance to thermal and chemical wear, enhancing the durability and lifespan of the lining. This durability reduces the frequency of refractory replacement, resulting in reduced waste generation and resource consumption. By extending the service life of the lining, monolithic refractories contribute to reducing the environmental impact associated with the production and disposal of refractory materials. Furthermore, monolithic refractories can be formulated with specialized compositions and additives to enhance their resistance to corrosion and erosion, common challenges in iron and steel processes. By minimizing the wear and tear on the refractory lining, they help maintain the integrity of the furnace or kiln, preventing the leakage of harmful gases and pollutants that would otherwise contribute to emissions. In summary, monolithic refractories contribute to reducing emissions in iron and steel processes through their ease of installation and repair, superior thermal insulation properties, increased durability, and resistance to corrosion and erosion. By optimizing energy efficiency, minimizing downtime, and reducing waste generation, monolithic refractories offer a sustainable solution for the industry, aligning with the global efforts to combat climate change and promote environmental stewardship.
Q:How do monolithic refractories improve the efficiency of ladle and tundish purging furnaces?
Monolithic refractories improve the efficiency of ladle and tundish purging furnaces by providing better insulation, reducing heat loss, and enhancing the overall thermal efficiency of the furnaces. These refractories have high thermal conductivity and low thermal expansion, allowing for better heat transfer and uniform temperature distribution. Additionally, their superior resistance to thermal shocks and chemical attacks prolongs the lifespan of the furnaces, reducing maintenance and downtime.
Q:What are the challenges in repairing and maintaining monolithic refractories?
One of the challenges in repairing and maintaining monolithic refractories is the difficulty in identifying and accessing damaged areas. Monolithic refractories are typically used in complex and intricate structures, making it challenging to locate and reach areas that require repair or maintenance. Another challenge is the high temperatures involved, as monolithic refractories are often exposed to extreme heat. This requires specialized expertise and equipment to ensure safe and effective repairs. Additionally, the composition and application of monolithic refractories can vary, making it essential to understand the specific type being used in order to perform accurate repairs and maintenance. Overall, the challenges lie in the complexity of the structures, the extreme temperatures, and the need for specialized knowledge and tools.
Q:What are the recommended storage and handling practices for monolithic refractories?
The recommended storage and handling practices for monolithic refractories are crucial to ensure their optimal performance and longevity. Here are some key practices to follow: 1. Storage: Monolithic refractories should be stored in a clean, dry, and well-ventilated area. The storage facility should be protected from moisture, extreme temperatures, and direct exposure to sunlight. Ideally, the refractories should be stored on pallets or racks to prevent contact with the ground and minimize the risk of damage. 2. Handling: It is essential to handle monolithic refractories with care to avoid any physical damage. Refractories should be lifted and moved using appropriate lifting equipment, such as forklifts or cranes, to prevent excessive stress or strain on the material. Avoid dropping or dragging the refractories, as this can lead to cracks or fractures. 3. Packaging: If the monolithic refractories are supplied in packaging, it is important to inspect the packaging for any signs of damage or moisture before accepting the delivery. Damaged packaging can indicate potential damage to the refractory material. If any anomalies are noticed, it is advisable to inform the supplier immediately. 4. Moisture control: Monolithic refractories are susceptible to moisture absorption, which can lead to reduced performance and structural integrity. It is crucial to protect the refractories from direct contact with water or excessive humidity during storage and handling. If refractories become wet, they should be dried thoroughly before use to eliminate any absorbed moisture. 5. Stack height: When storing monolithic refractories, it is important to consider the stack height. Excessive stacking can result in pressure on the lower layers, leading to deformation or cracking. Follow the manufacturer's recommendations for maximum stack height to ensure the refractories' structural integrity. 6. Regular inspection: Regularly inspect the refractory material for any signs of damage or degradation during storage and handling. Look for cracks, spalling, or any other visible abnormalities. If any issues are identified, consult the manufacturer or a refractory expert for guidance on whether the material is still suitable for use. By following these recommended storage and handling practices, you can minimize the risk of damage to monolithic refractories and optimize their performance, ultimately extending their service life and ensuring their effectiveness in high-temperature applications.
Q:How do monolithic refractories prevent slag penetration?
Slag penetration is effectively prevented by monolithic refractories due to several mechanisms. Firstly, the high-quality materials used in monolithic refractories, such as alumina, silica, and magnesia, possess exceptional resistance to slag attack. These materials have a high melting point and can endure the corrosive nature of the slag. Secondly, the design of monolithic refractories incorporates a dense and compact structure that minimizes porosity. Slag penetration occurs when the molten slag infiltrates the pores and cracks of the refractory material. By reducing porosity, monolithic refractories create a barrier that restricts the entry of slag into the refractory lining. Furthermore, monolithic refractories can be chemically bonded to the substrate, resulting in a strong and impermeable bond. This bond enhances resistance to slag penetration by eliminating any gaps or weak points through which the slag could seep. Moreover, monolithic refractories can possess a high thermal shock resistance. Slag penetration is often intensified by thermal cycling, wherein the refractory material undergoes rapid temperature changes. Monolithic refractories with high thermal shock resistance can endure these temperature fluctuations without cracking or spalling, therefore decreasing the risk of slag penetration. Additionally, the effective prevention of slag penetration relies on the proper installation and maintenance of monolithic refractories. The refractory lining must be appropriately designed, with the right thickness and geometry, in order to provide maximum protection against slag attack. Regular inspection and repair of any damaged or worn-out areas can also prevent slag penetration. In summary, monolithic refractories prevent slag penetration through their excellent resistance to slag attack, dense structure, chemical bonding, high thermal shock resistance, and proper installation and maintenance. By working together, these factors create a robust and impermeable barrier that safeguards the underlying substrate from the corrosive effects of slag.
Q:How do monolithic refractories help in reducing energy consumption in iron and steel production?
Monolithic refractories help in reducing energy consumption in iron and steel production by providing efficient insulation and heat retention properties. These refractories have low thermal conductivity, which minimizes heat loss and ensures that the generated heat is effectively utilized for the production processes. Their high refractoriness allows them to withstand extreme temperatures, reducing the need for frequent repairs or replacements that would require additional energy consumption. Additionally, monolithic refractories offer better resistance to thermal shock, which prevents thermal stress-induced cracks and extends their lifespan. Overall, the use of monolithic refractories in iron and steel production aids in optimizing energy usage and improving overall energy efficiency.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords