• Wind-PV(Diesel)Hybrid Power System System 1
  • Wind-PV(Diesel)Hybrid Power System System 2
  • Wind-PV(Diesel)Hybrid Power System System 3
Wind-PV(Diesel)Hybrid Power System

Wind-PV(Diesel)Hybrid Power System

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2 set
Supply Capability:
30 set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specification List

NO.

Name

Specification

Quantity

1

Containter

20*8*8.6ft

1

2

Solar Module

240W

30

3

Wind Generator

500W

2

4

Battery

12V120Ah

20

5

Controller

120V/40A

1

6

Inverter

6000W/AC230V

1

7

Diesel

5000W/AC230V

1

8

Air Conditioner

1000W

1

9

Cables

10

Others

 

 

 

  

 

 

 

2System Principle

 

 

 

 

 

 

 

 

 

 

 

 


3System Advantage

 

Extend battery

life

Reduce the dependence of climate system

24 hour uninterrupted power supply

Low maintenance cost

 

 

 

 

 

 

 


4Product Specification

(A) Solar Module

Rated Power

240W

Vmppt

29.4V

Imppt

8.17A

Voc

37.4V

Isc

8.55A

Power Temp.Coeff(/)

-0.47%

Ambient Temp

-40-85

Power Tolerance

±3%

NOCT

46±2

(B) Battery

Rated Voltage

240V

Rated Capacity (C10)

120Ah

Weight

35kg

Dimension

Lenth

406mm

Width

174mm

Height

209mm

Capacity

C120

150Ah

C30

138Ah

C10

120Ah

C1

78Ah

Overcharging Protect Voltage

14.4V/12V

Cut off Voltage

10.8V/12V

(C) Wind Generator

Rated Power

500W

Rated Wind Speed

13m/s

Cut-in Speed

4m/s

Cut-out Speed

25m/s

Survival Wind Speed

45m/s

Mill Diameter

1.36m

Mill Height

1.05m

Mill Weight

90kg

Rated Voltage

AC 42V

Rated Current

AC 6.9A

Protection Level

IP54

 

 

(D) Controller

Solar Controller

Rated Power

7.2KW

MPPT

DC120V-350V

Rated Voltage

DC 120V

Rated Current

60A

Conversion Efficiency

93%

Overload Capacity

120% output, 30mins

Wind Generator Controller

Rated Power

500W

Maximum Power

750W

Rated Voltage

AC 42V

E) Inverter

Rated Power

6000W

Rated Input Voltage

DC 120V

Rated Input Current

DC 50A

Rated Output Voltage

AC 230V

Rated Frequency

50Hz

Rated Current

AC 26.1A

Output Voltage PrecisionV

230±5%

Output Frequency PrecisionHz

50±0.05

Overload Capacity

120%, 60S; 150%, 10S

Inverter Efficiency

80%


Q:Can solar energy systems be used in areas with high levels of dust or debris?
Yes, solar energy systems can be used in areas with high levels of dust or debris. However, regular maintenance and cleaning may be required to ensure optimal performance of the solar panels.
Q:What is the impact of air pollution on the performance of solar panels?
Solar panel performance can be significantly affected by air pollution. One of the main ways in which it affects them is by diminishing the amount of sunlight that reaches the panels. Sunlight can be scattered and absorbed by air pollution, such as smog and particulate matter, resulting in a decrease in the solar energy absorbed by the panels. This, in turn, reduces the overall efficiency and power output of the panels. Furthermore, a layer of dust, dirt, and other pollutants can be deposited on the surface of solar panels due to air pollution. This layer obstructs and absorbs sunlight, further reducing the amount of energy that can be collected. Additionally, the accumulation of these pollutants acts as a barrier that hampers the transmission of sunlight to the solar cells, thus decreasing the panels' efficiency. Moreover, air pollution can cause the corrosion of solar panel surfaces. Pollutants like sulfur dioxide and nitrogen oxides can react with moisture in the air, forming acidic compounds. Over time, these compounds gradually deteriorate the protective coatings on the panels and damage the cells, leading to a reduction in performance and lifespan. Overall, the impact of air pollution on solar panels is significant. It diminishes the amount of harvested sunlight, lowers the efficiency and power output of the panels, and can cause damage and deterioration over time. Therefore, it is crucial to consider the effects of air pollution during the design and installation of solar panels to ensure optimal performance and longevity.
Q:What is the average payback period for a solar energy system?
The average payback period for a solar energy system varies depending on various factors such as the initial cost of the system, location, energy usage, available incentives, and financing options. However, on average, it typically ranges from 5 to 10 years.
Q:How do solar energy systems impact the efficiency of air conditioning systems?
Solar energy systems can significantly impact the efficiency of air conditioning systems by providing a clean and renewable source of power. By harnessing solar energy, air conditioning units can operate without relying solely on grid electricity, reducing their carbon footprint and energy costs. Additionally, solar-powered air conditioning systems can operate during peak demand periods when electricity rates are typically higher, further enhancing their efficiency.
Q:Can a solar energy system be installed on a church or religious building?
Yes, a solar energy system can be installed on a church or religious building. In fact, many religious organizations have started to embrace solar energy as a sustainable and environmentally friendly solution to reduce their carbon footprint and lower their energy costs. Installing solar panels on the roof of a church or religious building can generate clean and renewable energy, which can be used to power the facility and reduce its reliance on traditional energy sources. Additionally, by going solar, religious organizations can set an example for their communities and inspire others to adopt clean energy practices.
Q:Can solar energy systems be used in areas with limited access to solar energy training programs?
Yes, solar energy systems can still be used in areas with limited access to solar energy training programs. While training programs can provide valuable knowledge and skills, there are resources available online, in books, and through self-study that can help individuals learn about solar energy systems and their installation and maintenance. Additionally, local experts or professionals already working in the field can provide guidance and support to those interested in utilizing solar energy systems in such areas.
Q:Can solar energy systems be used in rural areas without access to the grid?
Solar energy systems are definitely able to be utilized in rural areas that lack access to the grid. In reality, solar power can serve as an ideal solution for off-grid locations as it captures energy from the sun and converts it into electricity without relying on conventional power sources. Sunlight can be captured by installing solar panels on rooftops or in open spaces, which can then be converted into usable electricity through an inverter system. This electricity can be utilized to power a wide range of appliances and devices, providing electricity for lighting, charging mobile phones, operating small appliances, and even powering agricultural equipment or water pumps. Furthermore, any excess energy generated during the day can be stored in batteries for use during nighttime or overcast days. Solar energy systems present a sustainable and dependable electricity source for rural communities, decreasing their reliance on costly and unreliable generators that run on fossil fuels or traditional power grids.
Q:Can a solar energy system be installed on a flat roof?
Yes, a solar energy system can be installed on a flat roof. In fact, flat roofs are often considered ideal for solar panel installations due to their unobstructed space and ease of installation.
Q:Can a solar energy system be used in areas with limited sunlight?
Yes, a solar energy system can still be used in areas with limited sunlight. While it is true that solar panels produce the most electricity when exposed to direct sunlight, they can still generate power even in areas with limited sunlight. Solar panels can still produce electricity on cloudy days or during periods of low sunlight, albeit at a reduced efficiency. Additionally, advancements in solar panel technology have made it possible for panels to capture and convert even diffuse sunlight, which means they can still function in areas with limited direct sunlight. Moreover, solar energy systems can be designed to include energy storage solutions such as batteries, allowing for the storage of excess energy generated during periods of peak sunlight for use during periods of limited sunlight. This ensures that solar energy can still be utilized in areas with limited sunlight, making it a viable and sustainable energy solution for various regions around the world.
Q:Can solar energy systems be used for powering electric plane systems?
Solar energy systems have the ability to power electric plane systems. The concept of using solar power for aviation has gained considerable attention in recent years. In order to capture sunlight and convert it into electricity, solar panels can be installed on the wings and fuselage of an aircraft. This electricity can then be utilized to power various systems on the plane, including navigation, communication, lighting, and auxiliary power units. While it is currently not practical to solely rely on solar power for the main propulsion of a commercial plane due to the limited energy density of solar panels, solar energy can still play a valuable role in reducing overall energy consumption in aircraft. By utilizing solar power for auxiliary systems, electric planes can significantly decrease their dependence on traditional fossil fuel-based power sources. Experimental and small-scale projects have already shown promising results in solar-powered electric planes. For example, Solar Impulse 2, a solar-powered aircraft, successfully completed a round-the-world journey in 2016, highlighting the potential of solar energy in aviation. NASA is also actively exploring the application of solar energy in their electric aircraft research. However, there are still obstacles to overcome in order to fully integrate solar energy systems into commercial aviation. The efficiency and weight of solar panels need to be enhanced to generate sufficient power for larger aircraft. Additionally, advanced energy storage technologies must be developed to store excess solar energy for use during low-sunlight conditions or nighttime flights. Despite these challenges, the potential advantages of utilizing solar energy in aviation are significant. Solar-powered electric planes have the capability to reduce carbon emissions and decrease reliance on fossil fuels, ultimately leading to a more sustainable and environmentally friendly aviation industry. As technology continues to advance, the integration of solar energy systems into electric plane systems will likely become more feasible and widespread.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords