• Prime quality square alloy steel billet 170mm Q235 System 1
  • Prime quality square alloy steel billet 170mm Q235 System 2
  • Prime quality square alloy steel billet 170mm Q235 System 3
  • Prime quality square alloy steel billet 170mm Q235 System 4
  • Prime quality square alloy steel billet 170mm Q235 System 5
  • Prime quality square alloy steel billet 170mm Q235 System 6
Prime quality square alloy steel billet 170mm Q235

Prime quality square alloy steel billet 170mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 170mm Q235

 Prime quality square alloy steel billet 170mm Q235

Description of Prime quality square alloy steel billet 170mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 170mm Q235

 

Main Feature of Prime quality square alloy steel billet 170mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 170mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 170mm Q235

 

Specifications of Prime quality square alloy steel billet 170mm Q235

Product

Prime quality square alloy steel billet 170mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 170mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q:What are the main factors affecting the tensile strength of steel billets?
There are several main factors that affect the tensile strength of steel billets. Firstly, the composition of the steel plays a significant role. The presence of certain elements, such as carbon, manganese, and silicon, can greatly influence the strength of the steel. Carbon, in particular, is a key element in increasing the strength of steel through its ability to form strong interatomic bonds. Secondly, the heat treatment process employed during the production of steel billets is crucial. Heat treatment, such as quenching and tempering, can significantly enhance the tensile strength of the steel by manipulating its microstructure. Quenching involves rapidly cooling the steel, which creates a hardened structure, while tempering involves reheating the steel to a specific temperature to achieve the desired balance of hardness and toughness. Additionally, the grain size of the steel also affects its tensile strength. Fine-grained steel generally exhibits higher strength due to the increased number of grain boundaries, which act as barriers to dislocation movement. On the other hand, coarse-grained steel tends to have lower strength as it allows for easier dislocation movement. Moreover, the presence of impurities or defects in the steel can weaken its tensile strength. Inclusions, such as sulfur, phosphorus, and non-metallic inclusions, can act as stress concentration points and promote crack initiation, leading to reduced strength. Similarly, the presence of voids, porosity, or other structural defects can compromise the overall strength of the steel billets. Lastly, the processing conditions during the manufacturing of steel billets can affect their tensile strength. Parameters such as rolling and forging temperatures, deformation rate, and cooling rate can influence the resulting microstructure and, consequently, the strength of the steel. In conclusion, the main factors affecting the tensile strength of steel billets include the steel composition, heat treatment process, grain size, impurities or defects, and processing conditions. Understanding and optimizing these factors are crucial for producing steel billets with the desired mechanical properties.
Q:How are steel billets used in the production of steel cables?
Steel billets are used in the production of steel cables by being heated and then passed through a series of rollers to shape them into thin, long strands. These strands are then twisted together to form the cables, which are used for various applications such as suspension bridges, elevators, and construction projects. The high strength and durability of steel billets make them ideal for producing strong and reliable steel cables.
Q:What industries use steel billets?
Several industries use steel billets, including automotive, construction, manufacturing, and infrastructure. Steel billets are commonly used as raw material in the production of various metal products such as pipes, rods, bars, wires, and sheets. They are also utilized in the construction of bridges, buildings, and other structural components. The automotive industry uses steel billets for manufacturing parts like engine blocks, chassis, and suspension components. Additionally, steel billets find applications in the energy sector, machinery production, and shipbuilding.
Q:How are steel billets used in the manufacturing of furniture?
Steel billets are used in the manufacturing of furniture as a raw material for various components such as frames, legs, and supports. They are often shaped, cut, and welded to create the desired structural elements of furniture pieces, providing strength, durability, and stability to the final product.
Q:What are the different surface treatments for rust prevention in steel billets?
There are several surface treatments available for rust prevention in steel billets. These treatments aim to protect the steel surface from corrosion caused by exposure to moisture or other corrosive elements. Some of the commonly used surface treatments include: 1. Hot-dip galvanizing: This process involves immersing the steel billets in a bath of molten zinc, which creates a protective layer on the surface. The zinc coating acts as a barrier against corrosion, preventing the steel from coming into contact with corrosive elements. 2. Electroplating: In this method, a thin layer of a corrosion-resistant metal, such as zinc, nickel, or chromium, is deposited onto the steel billet surface using an electric current. The electroplated layer provides a protective barrier against rust formation. 3. Paint coatings: Applying a layer of paint on the steel billet surface can effectively prevent rust. The paint forms a protective barrier, preventing moisture or corrosive substances from reaching the steel surface. Multiple layers of paint, including primer and topcoat, are typically applied to enhance durability. 4. Powder coating: This process involves applying a dry powder, usually made of epoxy, polyester, or acrylic, to the steel billet surface. The powder is electrostatically charged and adheres to the metal, forming a protective coating when heated. Powder coating provides excellent corrosion resistance and durability. 5. Phosphating: Phosphating is a chemical treatment method that involves applying a phosphate coating to the steel surface. The phosphate layer enhances the steel's resistance to corrosion and provides a good base for subsequent paint or powder coating. 6. VCI (Vapor Corrosion Inhibitor) packaging: This method utilizes special packaging materials that release volatile corrosion inhibitors. These inhibitors create a protective atmosphere around the steel billets, preventing rust formation during storage or transportation. It is important to note that the choice of surface treatment depends on factors such as the steel's intended application, environment, and cost considerations. Each treatment method has its advantages and limitations, and it is essential to select the most appropriate treatment for effective rust prevention in steel billets.
Q:How are steel billets marked for identification and traceability?
Various methods are utilized to mark steel billets for identification and traceability. One prevalent approach involves the utilization of unique identification numbers or codes. These numbers or codes can be engraved or stamped onto the billet's surface, enabling easy identification. Laser engraving machines or steel stamping tools are frequently employed for this purpose. Aside from identification numbers, other significant details, such as the grade, heat number, and production date, can also be marked on the billet. These details play a crucial role in traceability, allowing for the tracking of the steel's origin and quality. Moreover, some manufacturers may choose to employ additional marking techniques, such as paint or ink marking. This may entail the use of specific colors or symbols to represent different characteristics or attributes of the billet. For example, a particular color might indicate the intended use of the steel, while a symbol may signify the manufacturer's logo or quality certification. Overall, the marking of steel billets for identification and traceability is indispensable in ensuring quality control, verifying compliance with industry standards, and facilitating efficient inventory management throughout the supply chain.
Q:What are the main factors affecting the formability of steel billets?
There are several factors that affect the formability of steel billets, including the composition of the steel, its microstructure, temperature, and strain rate. The composition of the steel is a crucial factor in determining its formability. Elements such as carbon, manganese, and silicon can influence the strength and ductility of the steel. Higher levels of carbon and alloying elements can increase the strength of the steel but may decrease its formability. On the other hand, lower carbon content and higher levels of elements like manganese can enhance the formability of the steel. The microstructure of the steel is another significant factor. The size, distribution, and morphology of the grains in the steel can impact its formability. Finer grains generally provide better formability, as they allow for more uniform deformation during shaping processes. Additionally, the presence of precipitates or inclusions in the microstructure can affect the formability by causing localized stress concentrations. Temperature plays a vital role in the formability of steel billets. Heating the steel to elevated temperatures can increase its ductility and reduce its strength, making it easier to form. This process, known as hot forming, allows for greater deformation without the risk of fracture. However, excessively high temperatures can also lead to excessive grain growth, which can negatively impact formability. Lastly, the strain rate, or the rate at which the steel is deformed, can affect its formability. Higher strain rates generally result in reduced formability as they can lead to strain hardening, where the steel becomes harder and more resistant to deformation. Therefore, controlling the strain rate during forming processes is essential to maintain optimal formability. In conclusion, the main factors affecting the formability of steel billets include composition, microstructure, temperature, and strain rate. By considering these factors, manufacturers can optimize the formability of steel billets to meet specific requirements during shaping processes.
Q:How do steel billets contribute to the defense industry?
Steel billets contribute to the defense industry by serving as a primary material for manufacturing various defense equipment and vehicles. These billets are used to produce armored vehicles, tanks, naval vessels, aircraft carriers, submarines, and military-grade weapons. The high strength and durability of steel make it ideal for creating protective structures and components that can withstand extreme conditions, ballistic impacts, and explosive forces. Additionally, steel billets are also utilized in the construction of defense infrastructure, such as military bases and facilities.
Q:What is the typical production process for steel billets?
The process of producing steel billets typically involves a series of steps. Initially, raw materials like iron ore, coal, and limestone are acquired. These materials are then processed and converted into iron through a blast furnace or direct reduction method. To eliminate impurities and adjust the composition, the iron is further refined in either a basic oxygen furnace or an electric arc furnace. Once the iron has been refined, it is poured into large rectangular molds known as ingots. These ingots are subsequently heated and rolled into semi-finished products called blooms or slabs. Blooms usually have a square or rectangular shape, whereas slabs are flat and rectangular in form. The next stage is to further process the blooms or slabs into billets. This is achieved by reheating the semi-finished products and passing them through a sequence of rolling mills. The rolling mills exert pressure to shape the metal and decrease its thickness. This process, known as hot rolling, takes place. After hot rolling, the billets are cooled and carefully examined for any defects. They may also undergo additional processes, such as surface treatment or heat treatment, to enhance their properties. Finally, the billets are typically cut into desired lengths and stored before undergoing further processing or being shipped to customers. In conclusion, the production of steel billets involves obtaining raw materials, refining the iron, casting it into semi-finished products, hot rolling, and conducting final inspection and processing. This comprehensive process ensures that the steel billets meet the necessary specifications and quality standards before being utilized in various industries, including construction, automotive, and manufacturing.
Q:What are the different types of surface defect detection equipment for steel billets?
Steel billets have a variety of surface defect detection equipment available. These equipment are specifically designed to identify and analyze defects on the surface of steel billets, ensuring that only top-notch products are used for different applications. Some of the diverse types of surface defect detection equipment for steel billets include: 1. Ultrasonic Testing (UT): UT equipment utilizes sound waves to detect surface defects in steel billets. It emits high-frequency sound waves that penetrate the material and bounce back when they come across any surface irregularities. This method aids in the identification of cracks, voids, and other defects on the surface. 2. Eddy Current Testing (ECT): ECT equipment uses electromagnetic induction to detect surface defects in steel billets. It operates by passing an alternating current through a coil, generating a magnetic field that interacts with the conductive material of the billet. Any surface defect or irregularity causes a change in the magnetic field, which can be measured and analyzed. 3. Magnetic Particle Inspection (MPI): MPI equipment utilizes magnetic fields and iron particles to detect surface defects in steel billets. The billet is magnetized, and iron particles are applied to its surface. These particles gather around any surface defect, creating visible indications that can be easily identified and evaluated. 4. Visual Inspection: Visual inspection equipment involves the use of cameras, lasers, and other optical devices to detect surface defects in steel billets. These devices capture images or videos of the billet's surface, enabling inspectors to visually identify any irregularities or defects. 5. Thermographic Testing: Thermographic equipment uses infrared cameras to detect surface defects in steel billets by measuring temperature variations. Any defect causes a difference in heat transfer, resulting in distinct thermal patterns that can be detected and analyzed. 6. X-ray Inspection: X-ray inspection equipment employs X-ray radiation to penetrate the steel billet and detect internal and surface defects. It provides detailed images that allow inspectors to identify cracks, voids, and other defects that are not visible to the naked eye. In summary, these various types of surface defect detection equipment for steel billets offer a range of methods to ensure the quality and integrity of the billets, enabling manufacturers to deliver high-quality steel products to different industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords