• Prime quality square alloy steel billet 160mm Q235 System 1
  • Prime quality square alloy steel billet 160mm Q235 System 2
  • Prime quality square alloy steel billet 160mm Q235 System 3
  • Prime quality square alloy steel billet 160mm Q235 System 4
  • Prime quality square alloy steel billet 160mm Q235 System 5
  • Prime quality square alloy steel billet 160mm Q235 System 6
Prime quality square alloy steel billet 160mm Q235

Prime quality square alloy steel billet 160mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 160mm Q235

 Prime quality square alloy steel billet 160mm Q235

Description of Prime quality square alloy steel billet 160mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 160mm Q235

 

Main Feature of Prime quality square alloy steel billet 160mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 160mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 160mm Q235

 

Specifications of Prime quality square alloy steel billet 160mm Q235

Product

Prime quality square alloy steel billet 160mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 160mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q:How are steel billets used in the manufacturing of industrial machinery?
The production of industrial machinery heavily relies on steel billets, which are crucial elements. These billets are produced through continuous casting, a process where molten steel is poured into molds to form solid rectangular shapes. Once the formation of steel billets is complete, they undergo different processes to transform them into various components of industrial machinery. A common application of steel billets is in the manufacturing of machine parts like gears, shafts, and axles. These parts need to possess high strength and durability to endure the demanding conditions of industrial use, and steel billets provide the necessary material properties. Steel billets are also utilized in the creation of large structural components such as frames, bases, and supports for industrial machinery. These components must be capable of handling heavy loads and providing stability, and the utilization of steel billets guarantees the required strength and rigidity. Moreover, steel billets serve as the raw material for forging, a process that involves heating and shaping them under mechanical force to create intricate shapes such as crankshafts and connecting rods. The remarkable malleability and ductility of steel billets make them ideal for forging, enabling manufacturers to produce precise and complex components for industrial machinery. Furthermore, steel billets are commonly employed in the production of specialized machinery like rolling mills and presses, which are utilized in various industrial processes. These machines necessitate robust components that can withstand high temperatures, pressures, and forces, and steel billets provide the necessary strength and resilience. In conclusion, steel billets are of utmost importance in the manufacturing of industrial machinery due to their ability to offer the required strength, durability, and versatility for producing different components and structures. Their utilization ensures the reliability and performance of industrial machinery across a wide range of applications.
Q:What are the potential applications of steel billets in the defense sector?
Due to their strength, durability, and versatility, steel billets have numerous potential applications in the defense sector. Here are several examples: 1. Armored Vehicles: Steel billets can be utilized to manufacture the hulls and components of armored vehicles, offering improved protection against ballistic threats and explosive devices. Their high strength and toughness make them suitable for enduring extreme conditions and impacts on the battlefield. 2. Weapon Systems: Steel billets can be incorporated into the production of various weapon systems, such as artillery guns, tanks, and missile launchers. These components require materials capable of withstanding high pressures, heat, and mechanical stresses, all of which steel billets can provide. 3. Defense Infrastructure: Steel billets can be employed in the construction of defense infrastructure, including military bases, bunkers, and fortifications. Their high strength and resistance to corrosion make them suitable for enduring environmental and physical challenges. 4. Naval Applications: Steel billets are crucial in the manufacturing of naval vessels, such as submarines, destroyers, and aircraft carriers. The ability of steel billets to withstand the harsh conditions of the marine environment, including corrosion and pressure, makes them an ideal choice for constructing these vessels. 5. Personal Protective Equipment (PPE): Steel billets can be used to produce body armor, helmets, and other protective gear for military personnel. The exceptional strength and impact resistance of steel billets offer enhanced protection against bullets, shrapnel, and other potential threats on the battlefield. 6. Military Infrastructure: Steel billets can be utilized in the construction of bridges, runways, and other critical military infrastructure. Their high load-bearing capacity and durability ensure the longevity and reliability of these structures, thereby supporting military operations. Overall, steel billets have diverse and crucial potential applications in the defense sector. Their properties make them an invaluable material for various defense applications, ensuring the protection of personnel, equipment, and infrastructure in challenging operational environments.
Q:How are the surface defects of steel billets repaired?
Various methods can be employed to repair the surface defects found in steel billets, depending on the type and severity of the defect. Common surface defects include cracks, seams, laps, and scale. One approach to repairing surface defects involves grinding or milling. This entails the utilization of abrasive tools or machines to remove the outer layer of the billet. Grinding can effectively eliminate small defects such as scale, pits, or minor cracks. However, it may not be suitable for extensive or deep defects. For more severe defects like cracks or seams, welding is a common repair technique. The damaged areas are heated to a suitable temperature and then filled using welding electrodes or filler materials. Skilled welders are required to ensure proper fusion and strength of the repaired area. Mechanical methods, such as peening or hammering, can also be employed to repair surface defects. These techniques involve the use of specialized tools to reshape and smooth out the affected areas. Peening can effectively eliminate shallow cracks or surface irregularities. Another method used to identify and repair surface defects in steel billets is ultrasonic testing. This technique utilizes high-frequency sound waves to detect any hidden cracks or flaws. Once the defects are identified, appropriate repair methods can be implemented. It is important to emphasize that the repair process for surface defects in steel billets necessitates careful inspection and assessment to determine the most suitable method. Quality control measures must be implemented to ensure that the repaired billets meet the required standards for strength and integrity.
Q:How are steel billets used in the production of automotive frames?
Steel billets are used in the production of automotive frames as a primary raw material. Billets are essentially long, rectangular-shaped pieces of steel that are heated and then formed into specific shapes through various manufacturing processes. In the case of automotive frames, these billets are typically heated and then passed through a series of dies and rollers to form the desired shape and dimensions. Once the billets are formed into the appropriate shape, they are further processed through cutting, bending, and welding techniques to create the intricate and sturdy structure of an automotive frame. The use of steel billets in the production of automotive frames is preferred due to the high strength and durability properties of steel, which are crucial for ensuring the safety and structural integrity of the vehicles. Moreover, steel billets offer excellent formability and machinability, allowing manufacturers to create complex frame designs that meet the specific requirements of different vehicle models. Additionally, steel is a cost-effective material, making it a popular choice for mass production in the automotive industry. Overall, steel billets play a vital role in the production of automotive frames by providing a strong and reliable foundation for the vehicle's structure. The use of these raw materials, along with advanced manufacturing techniques, ensures that automotive frames are able to withstand various forces and impacts, ultimately contributing to the overall safety and performance of the vehicles.
Q:How do steel billets contribute to the strength of a structure?
Steel billets contribute to the strength of a structure in several ways. Firstly, steel billets are produced by a process called casting, which involves pouring molten steel into molds and allowing it to solidify. This method ensures that the steel billets have a consistent and uniform composition, with minimal impurities. As a result, the structural integrity and strength of the final product are enhanced. Secondly, steel billets undergo a process called hot rolling or cold rolling, which further improves their strength. Hot rolling involves heating the steel billets to high temperatures and then passing them through a series of rollers, which compress and shape the steel into the desired form. This process helps align the steel's grain structure, making it stronger and more resistant to deformation. Additionally, steel billets are often used as raw material for the production of other steel products, such as beams, columns, and plates. These fabricated steel components are then incorporated into structures, providing additional strength and support. The high strength and durability of steel billets make them ideal for withstanding heavy loads, seismic forces, and other external pressures. Moreover, steel billets can be alloyed with other elements, such as carbon, manganese, and chromium, to enhance their mechanical properties and increase their strength. The addition of these alloying elements improves the steel's hardness, toughness, and resistance to corrosion, making it even more suitable for structural applications. Overall, steel billets play a crucial role in enhancing the strength of a structure. Through their uniform composition, hot or cold rolling processes, and alloying capabilities, steel billets contribute to the overall structural integrity, durability, and load-bearing capacity of buildings, bridges, and other infrastructure projects.
Q:What are the different types of defects in steel billets?
There are several types of defects that can occur in steel billets, which are essentially semi-finished steel products that are typically used as raw materials for various manufacturing processes. These defects can arise during the production or handling of billets and can affect their mechanical properties, structural integrity, and overall quality. Some common types of defects found in steel billets include: 1. Surface defects: These defects are typically visible on the outer surface of the billet and can include scratches, cracks, pits, or scale. Surface defects can occur due to improper handling, storage, or transportation of the billets, or as a result of poor manufacturing processes. 2. Internal defects: Also known as sub-surface defects, these occur within the cross-section of the billet and are not visible to the naked eye. Internal defects can include blowholes, inclusions, segregations, or voids. These defects can be a result of impurities in the raw materials, improper casting or solidification processes, or inadequate quality control measures. 3. Dimensional defects: These defects refer to deviations in the dimensions of the billet from the specified requirements. This can include variations in length, width, or thickness beyond the acceptable tolerances. Dimensional defects can be caused by factors such as improper cutting, rolling, or cooling processes during billet production. 4. Chemical composition defects: These defects occur when the steel billet does not meet the required chemical composition specifications. This could be due to impurities in the raw materials, improper mixing or alloying processes, or inadequate quality control during the production phase. 5. Mechanical defects: These defects affect the mechanical properties of the steel billet, such as its strength, toughness, or ductility. Mechanical defects can result from improper heat treatment, quenching, or tempering processes, or from inadequate quality control during the manufacturing process. It is important to detect and minimize these defects as they can adversely affect the performance and reliability of the final steel products that are made from these billets. Quality control measures, such as regular inspection and testing, can help identify and rectify any defects in steel billets, ensuring the production of high-quality finished products.
Q:What are the main factors affecting the magnetic properties of steel billets?
The main factors affecting the magnetic properties of steel billets are the composition of the steel, the crystal structure, the presence of impurities, and the manufacturing process used.
Q:What are the key properties and characteristics of steel billets?
Steel billets, which have a rectangular shape and typically a square cross-section, are semi-finished steel products. They serve as the initial stage for manufacturing various steel products such as bars, rods, and wire. Steel billets possess several important properties and characteristics: 1. Composition: Steel billets primarily consist of iron and carbon, with additional alloying elements incorporated to enhance specific properties. The carbon content generally ranges from 0.2% to 0.5%, depending on the desired strength and hardness. 2. Strength and Hardness: Due to their composition and heat treatment processes, steel billets offer excellent strength and hardness. This makes them suitable for applications requiring high load-bearing capacity and resistance to wear and tear. 3. Ductility: Despite their strength, steel billets also exhibit good ductility, allowing them to be easily shaped and formed into various products through processes like rolling, extrusion, and forging. This versatility enables their use in different manufacturing methods. 4. Homogeneity: Steel billets possess a uniform internal structure, ensuring consistent mechanical properties throughout the entire material. This homogeneity is achieved through precise casting and cooling processes, which minimize the presence of defects and impurities. 5. Dimensional Precision: Steel billets are manufactured with specific dimensions and tolerances, ensuring the desired size and shape for downstream processing. This dimensional precision enables efficient and accurate production, minimizing waste and maximizing productivity. 6. Surface Quality: Steel billets have a smooth and clean surface finish, free from significant imperfections or irregularities. This is crucial for subsequent processing steps, as it ensures proper bonding during welding, machining, or coating operations. 7. Heat Conductivity: Steel billets exhibit excellent thermal conductivity, efficiently transferring heat during various manufacturing processes like hot rolling or continuous casting. This property ensures uniform heating and cooling, resulting in consistent material properties. 8. Corrosion Resistance: Steel billets are prone to corrosion if left unprotected. However, they can be coated or treated with anti-corrosive measures to enhance their resistance to rust and other forms of degradation. In summary, steel billets are characterized by their strength, ductility, dimensional precision, and homogeneity. These properties make them a critical raw material in the steel industry, facilitating the production of high-quality steel products used in diverse sectors such as construction, automotive, and infrastructure.
Q:What is the process of hot rolling steel billets?
The process of hot rolling steel billets involves several steps to transform the billets into a desired shape and size. Firstly, steel billets, which are semi-finished products made from molten steel that has been cast into rectangular or square shapes, are heated to high temperatures in a reheating furnace. This heating process helps to make the steel more malleable and easier to shape. Once the billets reach the required temperature, they are fed into a series of rolling mills. These mills consist of a series of rotating rolls that exert pressure on the billets, gradually reducing their thickness and shaping them into long, flat, or shaped steel products. The number of rolling mills used in the process depends on the desired final product. As the billets pass through the rolling mills, they undergo multiple passes to achieve the desired shape and size. The rolls in each pass apply pressure on the billets, causing them to elongate and reduce in thickness. In some cases, the billets may also be twisted or bent to achieve specific shapes or profiles. During the rolling process, the steel billets are constantly monitored for temperature, dimensions, and surface defects. Any imperfections or irregularities detected are rectified through various corrective measures, such as adjusting the rolling parameters or using specialized equipment. After the desired shape and dimensions are achieved, the hot-rolled steel products are cooled by either air or water to prevent them from warping or losing their structural integrity. This cooling process, known as quenching, also helps in achieving the required mechanical properties of the steel. Finally, the hot-rolled steel products are cut into desired lengths and may undergo additional treatments, such as straightening or surface finishing, to meet specific customer requirements. The finished hot-rolled steel products are then ready for further processing, such as welding, fabrication, or assembly, depending on their intended use in various industries such as construction, automotive, or manufacturing.
Q:How are steel billets shaped into rods or wires?
Steel billets are shaped into rods or wires through a process called hot rolling. Hot rolling involves passing the steel billets through a series of rollers at high temperatures. The first step is to heat the billets to a temperature above their recrystallization point, typically around 1200-1300 degrees Celsius. This temperature ensures that the steel is soft and malleable, making it easier to shape. Once the billets are heated, they are then fed through a series of rollers that gradually reduce their thickness and shape them into the desired rod or wire. These rollers apply pressure to the billets, causing them to elongate and decrease in thickness. The number of rollers and their configurations may vary depending on the specific requirements of the rod or wire being produced. During the hot rolling process, the steel undergoes plastic deformation due to the applied pressure and high temperatures. This plastic deformation allows the steel to change its shape without breaking or cracking. The continuous rolling and reduction of thickness gradually transform the billets into rods or wires. After the steel has been rolled to the desired size and shape, it is then cooled, typically through a process known as air cooling. This cooling process allows the steel to retain its new shape and hardness. The cooled rods or wires can then be further processed, such as through additional heat treatments or surface treatments, to enhance their properties and meet specific requirements. Overall, the hot rolling process is essential in shaping steel billets into rods or wires. It allows for the precise control of dimensions and properties while ensuring the final product meets the desired specifications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords