• Prime quality square alloy steel billet 145mm Q235 System 1
  • Prime quality square alloy steel billet 145mm Q235 System 2
  • Prime quality square alloy steel billet 145mm Q235 System 3
  • Prime quality square alloy steel billet 145mm Q235 System 4
  • Prime quality square alloy steel billet 145mm Q235 System 5
  • Prime quality square alloy steel billet 145mm Q235 System 6
Prime quality square alloy steel billet 145mm Q235

Prime quality square alloy steel billet 145mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 145mm Q235

 Prime quality square alloy steel billet 145mm Q235

Description of Prime quality square alloy steel billet 145mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 145mm Q235

 

Main Feature of Prime quality square alloy steel billet 145mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 145mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 145mm Q235

 

Specifications of Prime quality square alloy steel billet 145mm Q235

Product

Prime quality square alloy steel billet 145mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 145mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q:What are the different surface treatments for improved surface hardness in steel billets?
There are several different surface treatments that can be used to improve the surface hardness of steel billets. These treatments are designed to enhance the wear resistance and durability of the steel, making it suitable for various industrial applications. One common surface treatment method is through carburizing. Carburizing involves introducing carbon into the surface of the steel billet by heating it in a carbon-rich atmosphere, such as methane or propane. This process forms a hard layer of high-carbon steel on the surface, known as a case, which significantly increases the surface hardness of the billet. Another surface treatment technique is nitriding. Nitriding is a process that involves exposing the steel billet to a nitrogen-rich atmosphere at elevated temperatures. This causes nitrogen atoms to diffuse into the surface of the steel, forming a hard nitride layer. Nitriding not only improves surface hardness but also enhances the resistance to wear and corrosion. A third surface treatment method is induction hardening. Induction hardening utilizes the principle of electromagnetic induction to heat the surface of the steel billet rapidly. Once the desired temperature is reached, the billet is quenched, resulting in a hardened surface layer. This treatment is particularly effective for localized hardening of specific areas on the steel billet. Additionally, shot peening is another surface treatment technique used to improve surface hardness. Shot peening involves bombarding the surface of the steel billet with small, high-velocity steel shots. This process induces compressive stresses in the surface layer, thereby increasing the hardness and fatigue resistance of the billet. Each of these surface treatments has its advantages and disadvantages, and the choice of treatment method depends on the specific requirements and intended use of the steel billets. By selecting an appropriate surface treatment, manufacturers can ensure that steel billets possess the necessary hardness and durability for their intended applications.
Q:What are the main challenges in sourcing steel billets?
There are several main challenges in sourcing steel billets. Firstly, one of the key challenges is ensuring a consistent and reliable supply of high-quality steel billets. Steel billets are typically sourced from steel mills or manufacturers, and it is crucial to find suppliers that can consistently meet the required specifications and standards. This involves conducting thorough research and due diligence to identify reputable and reliable suppliers who have a track record of producing high-quality billets. Another challenge is managing the cost and price fluctuations of steel billets. Steel prices are subject to various factors such as global demand, raw material costs, and market dynamics. As a result, the price of steel billets can be volatile, which can impact procurement decisions and budgets. Sourcing professionals need to carefully monitor market trends and negotiate pricing contracts to ensure the best value for their organization. Furthermore, logistics and transportation can pose challenges in sourcing steel billets. Steel billets are heavy and bulky, making transportation and logistics complex. Coordinating deliveries, managing shipping schedules, and ensuring timely arrival of the billets can be challenging, especially when sourcing from international suppliers. It is important to work closely with reliable logistics partners and have a robust supply chain management system in place to overcome these challenges. Quality control is another crucial aspect in sourcing steel billets. Due to the critical nature of steel in various industries, it is essential to ensure that the billets meet the required quality standards. This involves conducting quality inspections, reviewing certifications, and performing material testing to verify the integrity and properties of the billets. Regular audits and inspections should be conducted to maintain consistent quality throughout the sourcing process. Lastly, regulatory compliance and trade restrictions can present challenges in sourcing steel billets. Import/export regulations, tariffs, and trade barriers can impact the availability and cost of steel billets from certain regions. Sourcing professionals need to stay updated with the latest regulations and trade policies to navigate these challenges and ensure compliance with the applicable laws. In conclusion, the main challenges in sourcing steel billets include ensuring a consistent supply of high-quality billets, managing price fluctuations, handling logistics and transportation, maintaining quality control, and complying with regulatory requirements. Overcoming these challenges requires careful supplier selection, effective negotiation, robust supply chain management, and staying informed about market trends and regulations.
Q:What are the main factors affecting the hardenability of stainless steel billets?
The hardenability of stainless steel billets, or the ability of the material to be hardened through heat treatment, is influenced by several factors. 1. Alloy composition: The composition of stainless steel, particularly the content of elements such as carbon, chromium, nickel, and molybdenum, plays a significant role in its hardenability. Higher carbon content generally improves hardenability, while alloying elements like chromium and nickel enhance the corrosion resistance of stainless steel but may reduce its hardenability. 2. Grain size: The grain size of stainless steel billets affects the rate and depth of hardening. Finer grain structures tend to have better hardenability compared to coarser grain structures. This is because smaller grains allow for more uniform distribution of carbon and alloying elements, resulting in improved hardening response. 3. Heat treatment conditions: The specific heat treatment process used, including heating and cooling rates, soaking time, and quenching media, can significantly impact the hardenability of stainless steel billets. Proper control of these parameters is crucial to achieving the desired hardness and mechanical properties. 4. Cooling rate: The cooling rate during the quenching process is a critical factor in determining the hardenability of stainless steel. Rapid quenching, such as water or oil quenching, promotes martensitic transformation and greater hardness. Slower cooling rates, such as air cooling, result in a softer and less hardened structure. 5. Cross-sectional thickness: The thickness of the stainless steel billets also affects their hardenability. Thicker sections tend to have lower hardenability due to slower heat transfer rates during the quenching process. Thinner sections, on the other hand, can achieve higher hardness levels due to faster cooling rates. 6. Prior microstructure: The initial microstructure of the stainless steel billets, such as whether it is in the annealed or cold-worked condition, can influence hardenability. Cold work can introduce dislocations and grain boundaries, which may hinder the diffusion of carbon and alloying elements during heat treatment, resulting in reduced hardenability. Considering these factors, manufacturers and engineers must carefully select stainless steel grades and tailor the heat treatment process to achieve the desired level of hardenability and mechanical properties in stainless steel billets.
Q:What is the role of steel billets in the manufacturing of railway wheels?
The production of railway wheels heavily relies on steel billets, which serve as the primary raw material. These billets are crucial in creating wheels that possess exceptional strength, durability, and the ability to endure heavy loads, extreme temperatures, and constant wear and tear. To begin with, steel billets undergo a melting process and are then shaped into a cylindrical form, similar to the final shape of the railway wheel. Subsequently, these billets go through a series of manufacturing steps, including hot rolling, forging, and machining, to achieve the desired shape and dimensions of the railway wheel. One of the key advantages of using steel billets lies in their remarkable strength and toughness. Steel is widely recognized for its exceptional mechanical properties, such as high tensile strength and hardness. These characteristics are indispensable for railway wheels, as they need to bear immense loads and resist deformation even under extreme pressures. Furthermore, steel billets provide the necessary metallurgical properties essential for railway wheels. They can be alloyed with additional elements like carbon, manganese, and chromium to enhance their strength, hardness, and resistance to corrosion and fatigue. This ensures that the railway wheels maintain their structural integrity and performance over an extended period. In conclusion, steel billets play a fundamental role in the manufacturing process of railway wheels. They provide the raw material needed to create robust, durable, and dependable wheels that can withstand the challenging conditions of railway operations. By utilizing steel billets, railway wheels are able to meet the strict safety, performance, and longevity requirements of the transportation industry.
Q:How are steel billets used in the production of conveyor systems?
Steel billets are an essential component in the production of conveyor systems as they are used to create the main structural framework. The billets are first heated and then passed through a series of rollers to shape them into the desired form of the conveyor system. This process, known as hot rolling, ensures that the steel billets are transformed into long, slender bars with a consistent cross-sectional shape. Once the steel billets have been shaped, they are further processed to create various components of the conveyor system. These components include conveyor frames, support beams, brackets, and other structural elements that provide stability and strength to the overall system. Steel billets are well-suited for this purpose due to their high tensile strength and durability. In addition to the structural components, steel billets are also used to produce conveyor rollers. These rollers are crucial for facilitating the movement of materials along the conveyor system. The steel billets are machined and formed into cylindrical shapes, which are then fitted with bearings to ensure smooth rotation. The rollers are then installed at regular intervals along the conveyor, allowing for efficient and continuous material handling. Moreover, steel billets are often used to manufacture conveyor belts. The billets are processed into thin sheets, which are then coated with various materials such as rubber or fabric to provide grip and durability. These belts are responsible for carrying the load of the materials being transported and are designed to withstand heavy usage and harsh environments. Overall, steel billets play a vital role in the production of conveyor systems by providing the necessary structural support, as well as components like rollers and belts. Their strength, durability, and versatility make them an ideal choice for constructing conveyor systems that can handle heavy loads and ensure efficient material handling in various industries.
Q:What is the typical surface finish of a steel billet?
The typical surface finish of a steel billet is usually smooth and free from any major imperfections. However, it may have a slight scale or oxide layer due to the manufacturing process.
Q:How are steel billets shaped into other forms?
A process known as hot rolling is used to transform steel billets into different forms. This process involves feeding the steel billet through heated rollers, which compress and mold it into the desired shape. To begin, the steel billet is heated to a high temperature in a furnace. This heat treatment makes the steel more malleable and easier to shape. Once the billet has reached the desired temperature, it is then sent into a rolling mill. Within the rolling mill, the billet undergoes a series of passes through rollers that apply pressure and force to shape the steel. These rollers come in various shapes and sizes depending on the desired outcome. As the billet passes through the rollers, it gradually takes on the desired form, such as sheets, bars, or beams. The rolling process not only shapes the steel but also improves its mechanical properties. It refines the grain structure, enhances strength and toughness, and eliminates any internal defects. This makes the steel more suitable for a range of applications, including construction, automotive, and machinery. Following the hot rolling process, the steel often undergoes additional processing through cold rolling. This involves passing the steel through cold rollers to further refine its surface finish and dimensions. Additionally, secondary operations like cutting, bending, and welding may be carried out to further shape the steel into the desired end product. In conclusion, hot rolling plays a vital role in transforming steel billets into various forms. It enables the production of a wide range of steel products, each with its own unique shape, size, and mechanical properties. This helps meet the diverse needs of industries worldwide.
Q:What are the different grades of steel used for making billets?
Making billets requires the use of various grades of steel. The selection of steel depends on the intended purpose of the billet and the desired characteristics it should possess. Carbon steel is a commonly utilized grade for billet production. It is a versatile and cost-effective option, providing good strength and hardness. This grade finds extensive use in applications where high strength is crucial, particularly in the construction sector. Another frequently employed grade for billet manufacturing is alloy steel. By incorporating different alloying elements like chromium, nickel, or molybdenum into carbon steel, the resulting alloy steel exhibits enhanced strength, toughness, and resistance to corrosion. Hence, alloy steel is suitable for a wide range of applications, including automotive parts, machinery components, and tooling. Stainless steel is another grade commonly employed for billet production. With a minimum chromium content of 10.5%, stainless steel offers excellent resistance to corrosion. Industries requiring oxidation and corrosion resistance, such as the food and beverage industry, medical equipment manufacturing, and architectural applications, often employ stainless steel in billet production. Moreover, specialized grades of steel cater to specific applications. For instance, high-speed steel (HSS) is ideal for billets used in cutting tools due to its exceptional hardness and heat resistance. Tool steel is another specialized grade used to manufacture billets for tools and dies, offering high hardness, wear resistance, and toughness. To summarize, the grades of steel commonly used for making billets include carbon steel, alloy steel, stainless steel, high-speed steel, and tool steel. The choice of grade hinges upon the specific requirements of the application, such as strength, toughness, corrosion resistance, or specialized properties needed for cutting tools or tooling.
Q:What are the different machining processes for steel billets?
There are several different machining processes that can be used for steel billets, depending on the desired outcome and the specific requirements of the project. Some of the most common machining processes for steel billets include: 1. Turning: This process involves rotating the steel billet against a cutting tool to remove material and create a desired shape or surface finish. Turning can be performed on both the outer and inner surfaces of the billet. 2. Milling: Milling is a versatile machining process that uses a rotating cutting tool to remove material from the surface of the steel billet. It can be used to create various shapes, slots, and holes, and is often employed for precision machining applications. 3. Drilling: Drilling is a machining process that uses a rotating drill bit to create holes in the steel billet. It is commonly used for creating holes of different sizes and depths, and is often a crucial step in the manufacturing of steel components. 4. Grinding: Grinding is a precision machining process that involves removing material from the surface of the steel billet using an abrasive wheel. It is typically used to achieve a smooth and precise finish or to remove any imperfections or irregularities on the surface. 5. Boring: Boring is a process that enlarges an existing hole in the steel billet to achieve a specific diameter or depth. It is often used to create holes with high levels of accuracy and precision, especially in applications where concentricity is critical. 6. Thread cutting: This process involves cutting threads into the steel billet using a specialized cutting tool. It is commonly used to create threaded holes or bolts, which are essential for joining steel components together. 7. Broaching: Broaching is a machining process that uses a specialized tool called a broach to remove material from the steel billet in a series of successive cuts. It is often used to create complex shapes, such as keyways or splines, on the surface of the billet. These are just a few examples of the different machining processes that can be used for steel billets. The choice of the specific process will depend on factors such as the desired outcome, the complexity of the shape, the required surface finish, and the tolerances that need to be achieved.
Q:How do steel billets contribute to the overall sustainability of a structure?
Steel billets play a crucial role in enhancing the overall sustainability of a structure in several ways. Firstly, steel is a highly durable material that has a long lifespan, meaning structures built with steel billets will have a longer service life and require fewer replacements or repairs. This reduces the consumption of resources and materials needed for construction, thereby minimizing waste and conserving energy. Additionally, steel is 100% recyclable, which means that at the end of a structure's lifespan, the steel billets can be easily recovered and reused for other purposes. Recycling steel requires significantly less energy compared to producing it from raw materials, resulting in reduced greenhouse gas emissions and lower carbon footprints. This circular economy approach helps to conserve resources and reduce the demand for new steel production, which has a significant environmental impact. Furthermore, steel billets contribute to the overall sustainability of a structure through their strength and versatility. Steel has a high strength-to-weight ratio, meaning it can support heavy loads with less material, resulting in more efficient designs and reduced material consumption. This not only conserves resources but also reduces the carbon emissions associated with the transportation and delivery of steel. Moreover, steel is a non-combustible material, making structures built with steel billets less susceptible to fires. This enhances the safety and resilience of the structure, reducing the risk of damage or collapse during unforeseen events. The use of steel in structures can also contribute to energy efficiency by providing a thermal mass that retains and releases heat, reducing the need for excessive heating or cooling. In summary, steel billets contribute to the overall sustainability of a structure through their durability, recyclability, strength, and non-combustible properties. By using steel in construction, we can minimize waste, conserve resources, reduce carbon emissions, enhance safety, and improve energy efficiency, making structures more environmentally friendly and sustainable in the long run.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords