• China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale System 1
  • China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale System 2
China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale

China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
15597 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into 

more functional shapes and sizes. While they have already been put in the furnace, they still require a series 

of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in 

hardware stores, or used for different applications. The unformed billets, however, can be used in striking 

currency such as coins and as reserves, similar to gold bars.

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

 

Qaulity:own factory, stable quality

Tolerance: Strictly according to the G/B and JIS standard

Delivery time: within 45 days after receiving the L/C or advanced T/T payment.

Price term: FOB/CIF/ CFR according to clients requirements

Payment terms: 100%Irrevercable L/C at sight or T/T

 

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

 

 

 

 

China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale

China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale

China newly Square Steel Billets Size 60-150mm 3sp/ 5sp for sale

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

 

 

Q:What are the main factors affecting the metallurgical properties of steel billets?
The metallurgical properties of steel billets are influenced by several key factors. These factors encompass the steel's composition, the applied heat treatment, the presence of impurities, and the rate at which it cools. The composition of the steel plays a pivotal role in determining its metallurgical properties. The steel's strength, hardness, and ductility are significantly impacted by the amount of carbon present, as well as the inclusion of other alloying elements like manganese, chromium, and nickel. Additionally, different compositions can affect the steel's ability to resist corrosion or exhibit magnetic properties. Heat treatment is another crucial factor that affects the metallurgical properties of steel billets. Through this process, the steel is heated to a specific temperature and then cooled at a controlled rate. By altering the steel's microstructure, heat treatment influences its hardness, toughness, and overall mechanical properties. Various methods of heat treatment, such as annealing, quenching, and tempering, can be employed to achieve desired metallurgical properties. The presence of impurities in the steel also has an impact on its metallurgical properties. Impurities like sulfur, phosphorus, and oxygen can have negative effects on the steel's mechanical properties, diminishing its strength and ductility. Hence, minimizing the level of impurities is crucial to ensure the desired metallurgical properties. Lastly, the cooling rate during the solidification process plays a pivotal role in determining the steel billets' microstructure and properties. Rapid cooling, as seen in quenching, leads to a fine-grained microstructure that enhances the steel's strength and hardness. Conversely, slow cooling, such as during annealing, results in a coarse-grained microstructure that improves the steel's ductility and toughness. In conclusion, the metallurgical properties of steel billets are influenced by factors such as composition, heat treatment, impurities, and cooling rate. These factors are interconnected and must be carefully controlled to achieve the desired properties for various applications.
Q:How are steel billets used in the manufacturing of slabs?
Steel billets are used in the manufacturing of slabs by being heated and then rolled into a flat shape. The billets act as the starting material for the slab production process, undergoing various treatments and forming operations to achieve the desired dimensions and properties of the final slab.
Q:How are steel billets inspected for chemical composition?
Steel billets are inspected for chemical composition through a process called chemical analysis. This involves taking a sample from the billet and subjecting it to different testing methods to determine the precise amounts of various elements present in the steel. One common method used is spectrometry, specifically optical emission spectrometry (OES) or inductively coupled plasma (ICP) spectrometry. These techniques involve heating the steel sample until it reaches a plasma state, which allows the individual elements to emit characteristic wavelengths of light. By analyzing the emitted light, the concentration of each element can be determined. Another method is X-ray fluorescence (XRF) analysis. This technique involves bombarding the steel sample with high-energy X-rays, which causes the atoms in the sample to emit secondary X-rays. By measuring the energy and intensity of these secondary X-rays, the composition of the steel can be determined. In addition to these methods, other techniques such as mass spectrometry and wet chemical analysis may also be employed, depending on the specific requirements and accuracy needed for the inspection. Overall, steel billets are inspected for chemical composition using a combination of sophisticated analytical techniques, ensuring that the steel meets the desired specifications and quality standards.
Q:Can steel billets be heat treated for increased hardness?
Yes, steel billets can be heat treated to increase hardness. Heat treatment processes such as quenching and tempering can be used to alter the microstructure of the steel, resulting in improved hardness and other mechanical properties.
Q:How are steel billets used in the production of valves and fittings?
Valves and fittings heavily rely on steel billets as a vital raw material. These billets, essentially semi-finished steel products, go through various procedures to ultimately attain the desired shape and size of valves and fittings. To begin with, steel billets are heated to a specific temperature in a furnace to increase their malleability. This enables easier shaping and manipulation of the steel during subsequent forming methods. Once heated, the billets are then transferred to a rolling mill where they undergo multiple passes through rollers to gradually decrease their cross-sectional area and length. This hot rolling process refines the steel's grain structure and enhances its mechanical properties. Following hot rolling, the steel billets often undergo further processing using a technique known as extrusion. In this method, the heated billet is pushed through a die, which imparts the desired shape and dimensions onto the steel. Extrusion is commonly employed to produce cylindrical or tubular shapes, which are crucial components in valves and fittings. Once the desired shape is achieved, the extruded steel is typically subjected to heat treatment methods like quenching and tempering to enhance its strength and durability. This ensures that the final valves and fittings can withstand the demanding conditions they will encounter during their operational lifespan. Ultimately, the heat-treated steel is machined and finished to meet the specific requirements of the valves and fittings. This involves processes such as drilling, threading, and surface finishing to attain the necessary dimensions, threads, and smoothness. In conclusion, valves and fittings are produced from steel billets through a series of procedures including heating, hot rolling, extrusion, heat treatment, and machining. These processes guarantee that the resulting valves and fittings possess the necessary strength, durability, and dimensional accuracy needed for their intended applications.
Q:What are the different types of heat treatment processes used for steel billets?
There are several different types of heat treatment processes used for steel billets. Some commonly used methods include annealing, normalizing, quenching and tempering, and case hardening. Each process has its own purpose and is used to achieve specific properties in the steel billets.
Q:How are steel billets used in the production of hydraulic components?
Steel billets are an essential raw material used in the production of hydraulic components. These billets, which are semi-finished forms of steel, serve as the starting point for manufacturing various hydraulic parts. To begin with, steel billets are heated to high temperatures to make them malleable. This process is known as hot rolling, and it allows the billets to be easily shaped and formed into the desired hydraulic component. The hot billets are then passed through a series of rollers to achieve the desired size and shape, such as bars, rods, or tubes. Once the steel billets have been shaped, they undergo further machining processes to create specific hydraulic components. For example, they may be cut, drilled, or threaded to form pistons, cylinders, valve bodies, or other essential parts used in hydraulic systems. The use of steel billets in hydraulic component production offers several advantages. Firstly, steel is known for its high strength and durability, making it an ideal material for hydraulic applications where components are subjected to high pressure and heavy loads. Additionally, steel's excellent corrosion resistance ensures the longevity of hydraulic components, even in harsh operating conditions. Furthermore, steel billets allow for precise dimensional control during the manufacturing process. This ensures that the hydraulic components meet the required specifications and can seamlessly integrate into hydraulic systems without any compromise in performance. In conclusion, steel billets play a crucial role in the production of hydraulic components. By starting with these semi-finished forms of steel, manufacturers can create high-quality, durable, and precisely engineered parts that are vital for the efficient operation of hydraulic systems.
Q:How do steel billets contribute to the manufacturing of furniture?
Steel billets are an essential raw material in the manufacturing of furniture as they are used to create sturdy and durable frames, legs, and supports. The billets are melted down and shaped into various forms, allowing furniture manufacturers to produce high-quality and robust pieces that can withstand heavy loads and regular use.
Q:What are the main factors affecting the surface quality of steel billets?
Several factors influence the surface quality of steel billets. Firstly, the cleanliness of the steel is crucial. Impurities like oxides, scale, and inclusions can negatively impact the surface, causing defects such as pits, cracks, and roughness. Secondly, the temperature during the steelmaking process is important. Overheating can result in excessive scaling and oxidation, leading to a poor surface finish. Insufficient heating, on the other hand, can cause a non-uniform surface and inconsistent mechanical properties. Residual stresses also affect the surface quality. Uneven cooling or improper heat treatment can result in surface cracks, warping, or distortion. Surface treatment processes and their effectiveness also impact the surface quality. Grinding, polishing, or shot blasting can improve the surface finish by eliminating defects and creating a smoother surface. The quality of equipment and tools used in steel production plays a significant role as well. Worn-out or poorly maintained machinery can cause surface defects, inadequate surface preparation, or improper handling, thus affecting the final surface quality. Lastly, the composition and microstructure of the steel itself influence the surface quality. Variations in alloying elements, grain size, and phase distribution can affect the surface finish, hardness, and overall quality of the billets. In conclusion, cleanliness, temperature control, residual stresses, surface treatment processes, equipment quality, and steel composition are the main factors that affect the surface quality of steel billets. Proper steelmaking practices, surface treatments, and quality control measures are crucial in achieving high-quality steel billets with superior surface finish.
Q:Are steel billets used in the production of automotive parts?
Yes, steel billets are commonly used in the production of automotive parts. Steel billets are semi-finished products that are typically used as raw materials in various manufacturing processes. They are often forged or rolled into the desired shape and size to create automotive components such as engine parts, axles, gears, springs, and chassis. Steel billets offer excellent strength, durability, and formability, making them an ideal choice for producing automotive parts that require high performance and reliability.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords