• The utility of the various high frequency welded pipe ERW System 1
The utility of the various high frequency welded pipe ERW

The utility of the various high frequency welded pipe ERW

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
4000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

It is widely applied to line pipe and casing and tubing in oil transportation and casing field, and it is used in Low,high pressure liquid and gassy transportation and it is also good Structure pipe (for furniture, window, door, building , bridge, mechanical etc).

 

Standard of ERW Welded Pipes: API SPEC 5L, API SPEC 5CT, ASTM A53, GB/T9711.1

 

Steel Grade of ERW Welded Pipes:API SPEC 5L: B, X42, X46, X52, X56, X60, X65

 

API SPEC 5CT: J55, K55, N80, L80-1

 

ASTM A53: A, B, C

 

GB/T9711.1:L242、L290、L320、L360、L390、L415、L450

 

Sizes of ERW Welded Pipes:

 

Standard: GB/9711.1

 

Mechanical Properties

 

Remark: Besides below sizes, we also can arrange production based on requirement of customers

 

OD

WT

WEIGHT

INCH

MM

SCH

MM

INCH

KG/M

LB/INCH

1 1/2”

48.3

STD-40

3.68

0.145

4.09

2.75

1 1/2”

48.3

XS-80

5.08

0.2

5.47

3.68

2”

60.3

STD-40

3.91

0.154

5.49

3.69

2”

60.3

XS-80

5.54

0.218

7.56

5.08

2 1/2”

73

STD-40

5.16

0.203

8.72

5.86

2 1/2”

73

XS-80

7.01

0.276

11.52

7.74

3”

88.9

STD-40

5.49

0.216

11.41

7.67

3”

88.9

XS-80

7.62

0.3

15.43

10.37

3 1/2”

101.6

STD-40

5.74

0.226

13.71

9.21

3 1/2”

101.6

XS-80

8.08

0.318

18.83

12.65

4”

114.3

STD-40

6.02

0.237

16.24

10.91

4”

114.3

XS-80

8.56

0.337

22.55

15.15

5”

141.3

STD-40

6.55

0.258

21.99

14.78

5”

141.3

XS-80

9.53

0.375

31.28

21.02

6”

168.3

STD-40

7.11

0.28

28.55

19.19

6”

168.3

XS-80

10.97

0.432

42.99

28.89

8”

219.1

STD-40

8.18

0.322

42.98

28.88

8”

219.1

XS-80

12.7

0.5

65.3

43.88

10”

273

STD-40

9.27

0.365

60.9

40.92

10”

273

80

15.09

0.594

96.95

65.15

12”

323.8

STD

9.53

0.375

74.61

50.13

12”

323.8

40

10.31

0.406

80.51

54.1

12”

323.8

XS

12.7

0.5

98.42

66.14

12”

323.8

80

17.48

0.688

133.38

89.63

14”

355.6

40

11.13

0.438

95.51

64.18

14”

355.6

XS

12.7

0.5

108.48

72.9

14”

355.6

80

19.05

0.75

159.71

107.32

16”

406.4

XS-40

12.7

0.5

124.55

83.69

18”

457

STD

9.53

0.375

106.23

71.38

18”

457

40

14.27

0.562

157.38

105.75

18”

457

80

23.83

0.938

257.13

172.78

20”

508

40

15.09

0.594

185.28

124.5

20”

508

80

26.19

1.031

314.33

211.22

 

Q:How are steel pipes inspected for compliance with industry standards?
Steel pipes are inspected for compliance with industry standards through various methods, including visual examination, dimensional measurements, non-destructive testing, and mechanical testing. Trained inspectors carefully inspect the pipes to ensure they meet the required specifications, such as wall thickness, diameter, and surface quality. Non-destructive testing techniques like ultrasonic testing or magnetic particle inspection are used to detect any internal or surface defects. Mechanical tests, such as tensile or bend tests, are performed to evaluate the pipe's strength and ability to withstand pressure. These inspections help ensure that steel pipes meet the necessary industry standards and are fit for their intended use.
Q:Can steel pipes be used for stormwater management systems?
Yes, steel pipes can be used for stormwater management systems. Steel pipes are a commonly used material for stormwater management due to their durability, strength, and resistance to corrosion. They can effectively carry and transport stormwater, making them suitable for various applications in stormwater management systems.
Q:Can steel pipes be used for transporting slurry?
Yes, steel pipes can be used for transporting slurry. Steel pipes are known for their durability and strength, making them suitable for handling abrasive materials like slurry. The smooth interior surface of steel pipes helps to minimize friction and prevent clogging, ensuring efficient transportation of slurry. Additionally, steel pipes can withstand high pressure and are resistant to corrosion, making them a reliable choice for slurry transport.
Q:What is the typical length of a steel pipe?
The typical length of a steel pipe can vary depending on its purpose and application. However, standard lengths for steel pipes commonly range from 18 feet to 40 feet.
Q:How to distinguish seamless pipe and welded pipe?
Most of the welded pipe is six meters, the pipe has obvious welding marks, and seamless pipe wall without welding marks
Q:How do steel pipes handle chemical substances?
Steel pipes are highly resistant to chemical substances due to their inherent strength and durability. They can effectively handle a wide range of chemical substances without corroding or degrading. Additionally, steel pipes can be further protected by coatings or linings to enhance their resistance to specific chemicals.
Q:How are steel pipes coated for insulation purposes?
Steel pipes are commonly coated for insulation purposes through a process called external coating. This involves applying a layer of insulating material, such as polyethylene or epoxy, onto the surface of the steel pipe. The coating is carefully applied to ensure a uniform and continuous layer, which helps to prevent heat transfer and protect the pipe from corrosion.
Q:Can steel pipes be used for structural applications?
Indeed, structural applications can make use of steel pipes. With their high strength, durability, and ability to withstand various environmental conditions, steel pipes prove to be suitable for such purposes. The construction industry often relies on them to fabricate buildings, bridges, and other structures. Notably, steel pipes possess exceptional load-bearing capacity and can endure heavy loads, making them perfect for supporting structures and transferring loads. Moreover, the ease with which steel pipes can be fabricated, welded, and connected facilitates efficient construction. As a result, steel pipes emerge as a dependable and cost-effective choice for structural applications.
Q:How are steel pipes used in the construction of water treatment plants?
Steel pipes are widely used in the construction of water treatment plants due to their numerous advantages and suitability for this specific application. These pipes are utilized in various ways to ensure the efficient and reliable functioning of water treatment facilities. Firstly, steel pipes are commonly used in the transportation of water from its source to the treatment plant. They are highly durable and can withstand high pressure, ensuring the safe and secure delivery of water over long distances. Steel pipes are also resistant to corrosion, which is crucial in preventing contamination of the water supply. Within the treatment plant, steel pipes are used in the distribution system to transport water to different treatment processes. They are often laid underground or within the facility's infrastructure, ensuring a seamless flow of water between different treatment units. Steel pipes are known for their high strength and structural integrity, making them suitable for this purpose. Furthermore, steel pipes are used in the construction of various water treatment equipment. For instance, they are utilized in the construction of sedimentation tanks, where water is allowed to settle, and impurities are removed. Steel pipes are also used in the construction of filtration systems, where water passes through different layers of filters to remove contaminants. Another important application of steel pipes in water treatment plants is in the construction of pumping stations. These stations are responsible for maintaining the water flow throughout the treatment process. Steel pipes are employed in the design and construction of the pumping systems to ensure the efficient movement of water between different stages of treatment. In summary, steel pipes play a crucial role in the construction of water treatment plants. They are used for the transportation of water, distribution within the facility, construction of treatment equipment, and in the design of pumping stations. Their durability, resistance to corrosion, and high strength make them an ideal choice for this critical infrastructure.
Q:How are steel pipes connected in pipeline construction?
Steel pipes are connected in pipeline construction through various methods, such as welding, threading, and flanges. Welding involves melting the ends of two pipes together to form a strong and permanent bond. Threading involves cutting grooves into the ends of pipes, which are then screwed together using threaded fittings. Flanges are used to connect pipes by bolting them together, creating a secure and leak-proof connection. These connection methods ensure the integrity and durability of the pipeline system.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords